test_deepspeed.py 37.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import json
18
19
import os
import unittest
20
from copy import deepcopy
21

22
from parameterized import parameterized
23
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
24
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_available
25
from transformers.file_utils import WEIGHTS_NAME
26
from transformers.testing_utils import (
27
    CaptureLogger,
28
    CaptureStderr,
29
    ExtendSysPath,
30
    LoggingLevel,
31
32
33
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
34
    mockenv_context,
35
    require_deepspeed,
36
37
38
39
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
40
from transformers.trainer_utils import get_last_checkpoint, set_seed
41
42


43
44
45
tests_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
root_dir = os.path.dirname(tests_dir)
with ExtendSysPath(tests_dir):
46
47
48
    from test_trainer import TrainerIntegrationCommon  # noqa

    if is_torch_available():
49
        from test_trainer import RegressionModelConfig, RegressionPreTrainedModel, get_regression_trainer  # noqa
50
51


52
set_seed(42)
53

54
55
56
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

57
T5_SMALL = "t5-small"
58
T5_TINY = "patrickvonplaten/t5-tiny-random"
59
GPT2_TINY = "sshleifer/tiny-gpt2"
60
61


62
63
64
65
66
def load_json(path):
    with open(path) as f:
        return json.load(f)


67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


83
84
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
85
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
86
    from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
87

88
89
90
91
92
93
94

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, get_gpu_count()) if distributed else 1
95
96
    master_port = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
97
98


99
100
101
102
103
ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]


104
105
106
107
108
109
110
111
112
113
@require_deepspeed
@require_torch_gpu
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

114
        master_port = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
115
        self.dist_env_1_gpu = dict(
116
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        )

    def test_init_zero3(self):
        # test that zero.Init() works correctly under zero3
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)


155
@require_deepspeed
156
@require_torch_gpu
157
158
159
160
161
class TrainerIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

162
163
164
165
166
167
168
169
170
171
172
173
174
    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
175
    """
176
177
178

    def setUp(self):
        super().setUp()
179
180
181
182
183

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

184
        master_port = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
185
        self.dist_env_1_gpu = dict(
186
            MASTER_ADDR="localhost", MASTER_PORT=master_port, RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
187
        )
188

189
190
191
192
        self.ds_config_file = dict(
            zero2=f"{self.test_file_dir_str}/ds_config_zero2.json",
            zero3=f"{self.test_file_dir_str}/ds_config_zero3.json",
        )
193
194
195

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
196
197
198
            config_zero2 = json.load(f)
            # by default use fp16
            config_zero2["fp16"]["enabled"] = True
199
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
200
201
202
            config_zero3 = json.load(f)
            # by default use fp16
            config_zero3["fp16"]["enabled"] = True
203
204
            # This setting slows things down, so don't enable it by default unless needed by a test.
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
205
206
207
208
209
210
211
212
213
            config_zero3["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = False
        self.ds_config_dict = dict(
            zero2=config_zero2,
            zero3=config_zero3,
        )

    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
214
215

    # --- These tests are enough to run on one of zero stages --- #
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def test_hf_ds_config_mismatch(self):

        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

269
270
271
272
273
274
275
276
277
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
278
279
280
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
281
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
282
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
283
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
284
285
286
287
288
289
290
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
291
292
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
293
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
294
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
295
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
296
297
298
299
300
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
301
        a = 0
302
        with mockenv_context(**self.dist_env_1_gpu):
303
304
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
305
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
306
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
307
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
308
309
310
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
311

312
    @require_deepspeed_aio
313
314
315
316
317
318
319
320
321
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
            nvme_config = dict(device="nvme", nvme_path=nvme_path)
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
322
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
323
            with CaptureLogger(deepspeed_logger) as cl:
324
                trainer.train()
325
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
326
327
328
329
330

    # --- These tests need to run on both zero stages --- #

    @parameterized.expand(stages)
    def test_hf_optimizer_with_offload(self, stage):
331
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
332
333
334
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
335
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
336
        with mockenv_context(**self.dist_env_1_gpu):
337
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_dict)
338
            with CaptureLogger(deepspeed_logger) as cl:
339
                trainer.train()
340
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
341

342
343
344
345
346
347
348
    @parameterized.expand(stages)
    def test_fake_notebook_no_launcher(self, stage):
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
349
350
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
351
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=self.get_config_dict(stage))
352
            with CaptureLogger(deepspeed_logger) as cl:
353
                trainer.train()
354
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
355
356
357

    @parameterized.expand(stages)
    def test_early_get_last_lr(self, stage):
358
359
360
361
362
363
364
365
366
367
368
369
370
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
            trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=8,
371
                fp16=True,
372
                deepspeed=self.get_config_dict(stage),
373
374
375
376
                per_device_train_batch_size=8,
                logging_steps=1,
            )
            trainer.train()
377
378
379
            post_train_a = trainer.model.a.item()

            # XXX: for some reason the following check fails with zero3 - not a broken but a
380
381
382
383
384
            # different qualitative outcome - as if optimizer did run
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
385
386
            if stage == ZERO3:
                return
387
388
389

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
390
            self.assertEqual(post_train_a, a)
391

392
393
    @parameterized.expand(stages)
    def test_gradient_accumulation(self, stage):
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

409
410
411
412
413
414
415
416
417
        kwargs = dict(
            a=a,
            b=b,
            local_rank=0,
            train_len=train_len,
            fp16=True,
            deepspeed=self.get_config_dict(stage),
        )

418
419
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
420
421
                **kwargs,
                per_device_train_batch_size=16,
422
423
424
425
426
427
428
429
430
431
432
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
433
                **kwargs,
434
                per_device_train_batch_size=4,
435
                gradient_accumulation_steps=4,
436
437
438
439
440
441
442
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

443
444
445
446
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
447
448

        # see the note above how to get identical loss on a small bs
449
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=2)
450

451
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage):
452
453
454
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

        # XXX: this can be recoded and then removed once we require deepspeed>0.3.13
        from packaging import version

        import deepspeed

        if version.parse(deepspeed.__version__) > version.parse("0.3.13"):
            ds_file_list.append("zero_pp_rank_0_mp_rank_00_optim_states.pt")
        else:
            ds_file_list.append("zero_pp_rank_0_mp_rank_00optim_states.pt")
472
473
474

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
475
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
476
477
478

            # common files
            for filename in file_list:
479
480
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
481
482
483
484
485
486

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
487
488
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
489

490
491
    @parameterized.expand(stages)
    def test_save_checkpoints(self, stage):
492
493
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

494
        freq = 5
495
        output_dir = self.get_auto_remove_tmp_dir()
496
        ds_config_dict = self.get_config_dict(stage)
497
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
498
499
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True
500
501
502
503
504
505

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                output_dir=output_dir,
                save_steps=freq,
506
                fp16=True,
507
508
509
510
511
                deepspeed=ds_config_dict,
            )
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
512
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage)
513

514
515
516
517
518
519
    @parameterized.expand(stages)
    def test_can_resume_training_errors(self, stage):

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
520
            trainer = get_regression_trainer(output_dir=output_dir, fp16=True, deepspeed=ds_config_dict)
521
522
523
524
525
526
527
528

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
529

530
531
532
533
534
535
536
537
538
539
540
541
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

    @parameterized.expand(stages)
    def test_can_resume_training_normal(self, stage):
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
542
        output_dir = self.get_auto_remove_tmp_dir()
543
        ds_config_dict = self.get_config_dict(stage)
544
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
545
546
547
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True

548
549
550
        kwargs = dict(
            output_dir=output_dir, train_len=128, save_steps=5, learning_rate=0.1, fp16=True, deepspeed=ds_config_dict
        )
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    @parameterized.expand(stages)
    def test_load_state_dict_from_zero_checkpoint(self, stage):
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

        kwargs = dict(
            output_dir=output_dir,
            train_len=4,
            per_device_train_batch_size=4,
            num_train_epochs=1,
            save_strategy="steps",
            save_steps=1,
            learning_rate=0.1,
            fp16=True,
            deepspeed=ds_config_dict,
        )

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

618
619
620
621
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
622
        kwargs = dict(output_dir=output_dir, train_len=8, fp16=True)
623

624
625
        ds_config_zero3_dict = self.get_config_dict("zero3")
        ds_config_zero2_dict = self.get_config_dict("zero2")
626

627
        with mockenv_context(**self.dist_env_1_gpu):
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

650
651
652
653

@slow
@require_deepspeed
@require_torch_gpu
654
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
655
    """This class is for testing via an external script - can do multiple gpus"""
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
672

673
    @require_torch_multi_gpu
674
675
676
    @parameterized.expand(stages)
    def test_basic_distributed(self, stage):
        self.run_and_check(stage=stage, distributed=True)
677

678
679
    @parameterized.expand(stages)
    def test_do_eval_no_train(self, stage):
680
        # we should not fail if train is skipped
681
682
        self.run_and_check(
            stage=stage,
683
684
            eval_steps=1,
            distributed=False,
685
686
            do_train=False,
            do_eval=True,
687
        )
688

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    @parameterized.expand(stages)
    def test_fp32_non_distributed(self, stage):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp16=False,
        )

    @require_torch_multi_gpu
    @parameterized.expand(stages)
    def test_fp32_distributed(self, stage):
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
            fp16=False,
        )

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    @parameterized.expand(stages)
    def test_resume_train_not_from_ds_checkpoint(self, stage):
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
        kwargs = dict(stage=stage, eval_steps=1, distributed=True, do_train=do_train, do_eval=do_eval)

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

736
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
737
738
739
740

        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
741
742
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
743
744
745
746

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
747
748
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
749
750

    # XXX: need to do better validation beyond just that the run was successful
751
752
753
    def run_and_check(
        self,
        stage,
754
755
756
757
758
759
760
761
762
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
        fp16: bool = True,
        extra_args_str: str = None,
        remove_args_str: str = None,
763
764
765
    ):

        # we are doing quality testing so using a small real model
766
        output_dir = self.run_trainer(
767
            stage=stage,
768
            model_name=model_name,
769
            eval_steps=eval_steps,
770
            num_train_epochs=1,
771
772
            do_train=do_train,
            do_eval=do_eval,
773
            distributed=distributed,
774
            fp16=fp16,
775
776
777
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
778

779
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
780
781

        return output_dir
782
783
784

    def run_trainer(
        self,
785
        stage: str,
786
        model_name: str,
787
788
789
790
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
791
        distributed: bool = True,
792
        fp16: bool = True,
793
794
795
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
796
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
797
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
798
799
800
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
801
802
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
803
804
805
806
807
808
809
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
810
811
            --save_steps 0
            --eval_steps {eval_steps}
812
813
            --group_by_length
            --label_smoothing_factor 0.1
814
815
            --source_lang en
            --target_lang ro
816
            --report_to none
817
        """.split()
818
819
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

820
821
822
        if fp16:
            args.extend(["--fp16"])

823
824
825
826
827
828
829
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
830
            --max_train_samples 16
831
832
833
834
835
836
837
838
839
840
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
841
            --max_eval_samples 16
842
843
844
845
846
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
847
848
849
850

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

851
        # currently only works for bool args
852
853
854
855
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

856
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
857
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
858
        launcher = get_launcher(distributed)
859
860

        cmd = launcher + script + args + ds_args
861
        # keep for quick debug
862
863
864
865
866
867
868
869
870
871
872
873
874
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

    @parameterized.expand(stages)
    def test_clm(self, stage):
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
875
            --model_name_or_path {GPT2_TINY}
876
877
878
879
880
881
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
882
883
884
885
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
886
887
            --num_train_epochs 1
            --warmup_steps 8
888
889
            --block_size 64
            --fp16
890
            --report_to none
891
892
893
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
894
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
895
        launcher = get_launcher(distributed=True)
896
897
898
899

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
900
901
        execute_subprocess_async(cmd, env=self.get_env())

902
903
904
905
906
907
908
    def test_clm_from_config_zero3(self):
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
909
            --tokenizer_name {GPT2_TINY}
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
926
        launcher = get_launcher(distributed=True)
927
928
929
930
931
932
933

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
        assert "Detected DeepSpeed ZeRO-3" in cs.err