test_deepspeed.py 48.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import itertools
18
import json
19
20
import os
import unittest
21
from copy import deepcopy
22
from functools import partial
23

24
import datasets
25
from parameterized import parameterized
26

27
import tests.trainer.test_trainer
Stas Bekman's avatar
Stas Bekman committed
28
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
29
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
30
31
32
33
34
from transformers.integrations.deepspeed import (
    HfDeepSpeedConfig,
    is_deepspeed_available,
    unset_hf_deepspeed_config,
)
35
from transformers.testing_utils import (
36
    CaptureLogger,
37
    CaptureStd,
38
    CaptureStderr,
39
    LoggingLevel,
40
    TestCasePlus,
41
    backend_device_count,
42
    execute_subprocess_async,
43
    mockenv_context,
44
    require_deepspeed,
45
    require_optuna,
46
47
    require_torch_accelerator,
    require_torch_multi_accelerator,
48
    slow,
49
    torch_device,
50
)
51
from transformers.trainer_utils import get_last_checkpoint, set_seed
52
from transformers.utils import SAFE_WEIGHTS_NAME, is_torch_bf16_available_on_device
53

54

55
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
56
57
58
59
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
    )
60

61
62
63
    # hack to restore original logging level pre #21700
    get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")

64

65
set_seed(42)
66

67
68
69
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

70
T5_SMALL = "t5-small"
71
T5_TINY = "patrickvonplaten/t5-tiny-random"
72
GPT2_TINY = "sshleifer/tiny-gpt2"
73
74


75
76
77
78
79
def load_json(path):
    with open(path) as f:
        return json.load(f)


Stas Bekman's avatar
Stas Bekman committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


118
119
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
120
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
121
    from transformers.integrations.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
122

123
124
125
126
127
128

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
129
    num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
Stas Bekman's avatar
Stas Bekman committed
130
    master_port = get_master_port(real_launcher=True)
131
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
132
133


134
135
ZERO2 = "zero2"
ZERO3 = "zero3"
136
137
138
139

FP16 = "fp16"
BF16 = "bf16"

140
141
142
143
144
145
146
147
HF_OPTIM = "hf_optim"
HF_SCHEDULER = "hf_scheduler"
DS_OPTIM = "ds_optim"
DS_SCHEDULER = "ds_scheduler"

optims = [HF_OPTIM, DS_OPTIM]
schedulers = [HF_SCHEDULER, DS_SCHEDULER]

148
stages = [ZERO2, ZERO3]
149
if is_torch_bf16_available_on_device(torch_device):
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    dtypes = [FP16, BF16]
else:
    dtypes = [FP16]


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, dtypes))
164

165
166
params_with_optims_and_schedulers = list(itertools.product(stages, dtypes, optims, schedulers))

167

168
@require_deepspeed
169
@require_torch_accelerator
170
171
172
173
174
175
176
177
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

Stas Bekman's avatar
Stas Bekman committed
178
        master_port = get_master_port(real_launcher=False)
179
180
181
182
183
184
185
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
186

187
188
189
190
191
192
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

193
194
    def test_init_zero3_fp16(self):
        # test that zero.Init() works correctly under zero3/fp16
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)


229
class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus):
230
231
    def setUp(self):
        super().setUp()
232
233
234
235
236

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

Stas Bekman's avatar
Stas Bekman committed
237
        master_port = get_master_port(real_launcher=False)
238
239
240
241
242
243
244
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
245

246
247
248
249
        self.ds_config_file = {
            "zero2": f"{self.test_file_dir_str}/ds_config_zero2.json",
            "zero3": f"{self.test_file_dir_str}/ds_config_zero3.json",
        }
250
251
252

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
253
            config_zero2 = json.load(f)
254
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
255
            config_zero3 = json.load(f)
256
            # The following setting slows things down, so don't enable it by default unless needed by a test.
257
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
258
259
            config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False

260
261
262
263
        self.ds_config_dict = {
            "zero2": config_zero2,
            "zero3": config_zero3,
        }
264

265
266
267
268
269
270
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

271
272
273
    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
274

275
276

@require_deepspeed
277
@require_torch_accelerator
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
    """

298
    # --- These tests are enough to run on one of zero stages --- #
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def test_hf_ds_config_mismatch(self):
        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

351
352
353
354
355
356
357
358
359
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
360
361
362
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
363
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
364
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
365
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
366
367
368
369
370
371
372
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
373
374
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
375
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
376
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
377
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
378
379
380
381
382
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
383
        a = 0
384
        with mockenv_context(**self.dist_env_1_gpu):
385
386
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
387
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
388
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
389
390
391
392
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
393

394
    @require_deepspeed_aio
395
396
397
398
399
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
400
            nvme_config = {"device": "nvme", "nvme_path": nvme_path}
401
402
403
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
404
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
405
            with CaptureLogger(deepspeed_logger) as cl:
406
                trainer.train()
407
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    @require_optuna
    def test_hyperparameter_search(self):
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero3_dict = self.get_config_dict(ZERO3)

            # hyperparameter_search requires model_init() to recreate the model for each trial
            def model_init():
                config = RegressionModelConfig(a=0, b=0, double_output=False)
                model = RegressionPreTrainedModel(config)
                return model

            trainer = get_regression_trainer(
                local_rank=0,
                fp16=True,
                model_init=model_init,
                deepspeed=ds_config_zero3_dict,
            )

            n_trials = 3
            with CaptureLogger(deepspeed_logger) as cl:
                with CaptureStd() as cs:
                    trainer.hyperparameter_search(direction="maximize", n_trials=n_trials)
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
            self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output")
            self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output")

435
436
    # --- These tests need to run on both zero stages --- #

437
438
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_hf_optimizer_with_offload(self, stage, dtype):
439
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
440
441
442
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
443
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
444
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
445
        with mockenv_context(**self.dist_env_1_gpu):
446
            kwargs = {"local_rank": 0, "deepspeed": ds_config_dict}
447
448
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
449
            with CaptureLogger(deepspeed_logger) as cl:
450
                trainer.train()
451
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
452

453
454
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fake_notebook_no_launcher(self, stage, dtype):
455
456
457
458
459
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
460
461
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
462
            kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)}
463
464
465
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

466
            with CaptureLogger(deepspeed_logger) as cl:
467
                trainer.train()
468
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
469

470
471
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_early_get_last_lr(self, stage, dtype):
472
473
474
475
476
477
478
479
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
480
481
482
483
484
485
486
487
488
            kwargs = {
                "a": a,
                "b": b,
                "local_rank": 0,
                "train_len": 8,
                "deepspeed": self.get_config_dict(stage),
                "per_device_train_batch_size": 8,
                "logging_steps": 1,
            }
489
490
491
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

492
            trainer.train()
493
494
            post_train_a = trainer.model.a.item()

495
496
            # XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a
            # broken but a different qualitative outcome - as if optimizer did run
497
498
499
500
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
501
            if (stage == ZERO3 and dtype == FP16) or (dtype == BF16):
502
                return
503
504
505

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
506
            self.assertEqual(post_train_a, a)
507

508
509
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_gradient_accumulation(self, stage, dtype):
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

525
526
527
528
529
530
531
        kwargs = {
            "a": a,
            "b": b,
            "local_rank": 0,
            "train_len": train_len,
            "deepspeed": self.get_config_dict(stage),
        }
532
        kwargs[dtype] = True
533

534
535
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
536
537
                **kwargs,
                per_device_train_batch_size=16,
538
539
540
541
542
543
544
545
546
547
548
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
549
                **kwargs,
550
                per_device_train_batch_size=4,
551
                gradient_accumulation_steps=4,
552
553
554
555
556
557
558
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

559
560
561
562
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
563
564

        # see the note above how to get identical loss on a small bs
565
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=2)
566

567
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype):
568
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints
569
        file_list = [SAFE_WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
570
571
572
573
574
575
576
577

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

578
579
        if dtype == "bf16":
            ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt")
580
581
582

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
583
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
584
585
            # common files
            for filename in file_list:
586
587
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
588
589
590
591
592
593

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
594
595
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
596

597
598
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_save_checkpoints(self, stage, dtype):
599
600
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

601
        freq = 5
602
        output_dir = self.get_auto_remove_tmp_dir()
603
        ds_config_dict = self.get_config_dict(stage)
604
605
606
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
607
        if stage == ZERO3:
608
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
609
610
611

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
612
613
614
615
616
            kwargs = {
                "output_dir": output_dir,
                "save_steps": freq,
                "deepspeed": ds_config_dict,
            }
617
618
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
619
620
621
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
622
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype)
623

624
625
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_errors(self, stage, dtype):
626
627
628
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
629
            kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict}
630
631
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
632
633
634
635
636
637
638
639

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
640

641
642
643
644
645
646
647
648
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

649
650
    @parameterized.expand(params_with_optims_and_schedulers, name_func=parameterized_custom_name_func)
    def test_can_resume_training_normal(self, stage, dtype, optim, scheduler):
651
652
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
653
654
655
656
657
658

        # ToDo: Currently, hf_optim + hf_scheduler resumes with the correct states and
        # also has same losses for few steps but then slowly diverges. Need to figure it out.
        if optim == HF_OPTIM and scheduler == HF_SCHEDULER:
            return

659
        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
660
        ds_config_dict = self.get_config_dict(stage)
661
662
663
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
664
        if stage == ZERO3:
665
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
666

667
668
669
670
671
672
        if optim == HF_OPTIM:
            del ds_config_dict["optimizer"]

        if scheduler == HF_SCHEDULER:
            del ds_config_dict["scheduler"]

673
674
675
676
677
678
679
        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
680
        kwargs[dtype] = True
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

713
714
715
716
717
            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

718
719
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_state_dict_from_zero_checkpoint(self, stage, dtype):
720
721
722
723
724
725
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

726
727
728
729
730
731
732
733
734
735
        kwargs = {
            "output_dir": output_dir,
            "train_len": 4,
            "per_device_train_batch_size": 4,
            "num_train_epochs": 1,
            "save_strategy": "steps",
            "save_steps": 1,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
736
        kwargs[dtype] = True
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

753
754
755
756
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
757
        kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True}
758

759
760
        ds_config_zero3_dict = self.get_config_dict(ZERO3)
        ds_config_zero2_dict = self.get_config_dict(ZERO2)
761

762
        with mockenv_context(**self.dist_env_1_gpu):
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

779
780
            # with accelerate integration below line is additionally required for this test to pass
            trainer.accelerator.state._reset_state()
781
782
783
784
785
786
            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_best_model(self, stage, dtype):
        # Test that forced deepspeed reinit doesn't break the model. the forced re-init after
        # loading the best model in Trainer is there to workaround this bug in Deepspeed
        # https://github.com/microsoft/DeepSpeed/issues/1612
        #
        # The test is derived from a repro script submitted in this Issue:
        # https://github.com/huggingface/transformers/issues/17114
        #
        # One additional feature of this test is that we use a non-AdamW optimizer to test that
        # deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading
        # correctly

        from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer  # noqa

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # will use HF Trainer optimizer
        del ds_config_dict["scheduler"]  # will use HF Trainer scheduler
807
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
808
809
810
        # must use this setting to get the reload path exercised
        ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

811
        with mockenv_context(**self.dist_env_1_gpu):
812
            args_dict = {
813
814
                "per_device_train_batch_size": 1,
                "per_device_eval_batch_size": 1,
815
816
817
818
819
820
821
822
823
824
825
826
827
                "gradient_accumulation_steps": 1,
                "learning_rate": 1e-4,
                "num_train_epochs": 1,
                "do_train": True,
                "do_eval": True,
                "optim": "adafactor",
                "evaluation_strategy": "steps",
                "eval_steps": 1,
                "save_strategy": "steps",
                "save_steps": 1,
                "load_best_model_at_end": True,
                "max_steps": 1,
                "deepspeed": ds_config_dict,
828
                "report_to": "none",
829
830
831
            }

            training_args = TrainingArguments(output_dir, **args_dict)
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
            tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
            model = T5ForConditionalGeneration.from_pretrained(T5_TINY)

            def _add_eos_to_examples(example):
                example["input_text"] = f"question: {example['question']}  context: {example['context']}"
                example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
                return example

            def _convert_to_features(example_batch):
                input_encodings = tokenizer.batch_encode_plus(
                    example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
                )
                target_encodings = tokenizer.batch_encode_plus(
                    example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
                )

                encodings = {
                    "input_ids": input_encodings["input_ids"],
                    "attention_mask": input_encodings["attention_mask"],
                    "labels": target_encodings["input_ids"],
                }

                return encodings

            def get_dataset():
                data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
858
                data_files = {"train": data_file, "validation": data_file}
859
860
861
862
863
864
865
                raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
                train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
                valid_dataset = deepcopy(train_dataset)
                return train_dataset, valid_dataset

            train_dataset, eval_dataset = get_dataset()

866
867
868
869
870
871
872
873
874
875
            trainer = Trainer(
                model=model,
                tokenizer=tokenizer,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=eval_dataset,
            )
            trainer.train()  # crash 1 was here
            trainer.evaluate()  # crash 2 was here

876
877
878

@slow
@require_deepspeed
879
@require_torch_accelerator
880
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
881
    """This class is for testing via an external script - can do multiple gpus"""
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
898

899
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
900
    @require_torch_multi_accelerator
901
902
    def test_basic_distributed(self, stage, dtype):
        self.run_and_check(stage=stage, dtype=dtype, distributed=True)
903

904
905
    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
906
        self.run_and_check(
907
            stage=ZERO3,
908
            dtype=FP16,
909
910
            eval_steps=1,
            distributed=False,
911
912
            do_train=False,
            do_eval=True,
913
        )
914

915
916
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_non_distributed(self, stage, dtype):
917
918
919
920
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
921
            dtype=dtype,
922
923
924
925
926
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
927
            fp32=True,
928
929
        )

930
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
931
    @require_torch_multi_accelerator
932
    def test_fp32_distributed(self, stage, dtype):
933
934
935
936
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
937
            dtype=dtype,
938
939
940
941
942
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
943
            fp32=True,
944
945
        )

946
947
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_resume_train_not_from_ds_checkpoint(self, stage, dtype):
948
949
950
951
952
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
953
954
955
956
957
958
959
960
        kwargs = {
            "stage": stage,
            "dtype": dtype,
            "eval_steps": 1,
            "distributed": True,
            "do_train": do_train,
            "do_eval": do_eval,
        }
961
962
963
964
965
966
967
968
969
970

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

971
    @parameterized.expand(["bf16", "fp16", "fp32"])
972
    @require_torch_multi_accelerator
973
    def test_inference(self, dtype):
974
        if dtype == "bf16" and not is_torch_bf16_available_on_device(torch_device):
975
976
            self.skipTest("test requires bfloat16 hardware support")

977
978
        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
979
        fp32 = True if dtype == "fp32" else False
980
981
        self.run_and_check(
            stage=ZERO3,
982
            dtype=FP16,
983
984
985
986
987
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
988
            fp32=fp32,
989
990
        )

991
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
992
993
994
        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
995
996
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
997
998
999
1000

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
1001
1002
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
1003
1004

    # XXX: need to do better validation beyond just that the run was successful
1005
1006
1007
    def run_and_check(
        self,
        stage,
1008
        dtype,
1009
1010
1011
1012
1013
1014
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
1015
        fp32: bool = False,
1016
1017
        extra_args_str: str = None,
        remove_args_str: str = None,
1018
1019
    ):
        # we are doing quality testing so using a small real model
1020
        output_dir = self.run_trainer(
1021
            stage=stage,
1022
            dtype=dtype,
1023
            model_name=model_name,
1024
            eval_steps=eval_steps,
1025
            num_train_epochs=1,
1026
1027
            do_train=do_train,
            do_eval=do_eval,
1028
            distributed=distributed,
1029
            fp32=fp32,
1030
1031
1032
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
1033

1034
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
1035
1036

        return output_dir
1037
1038
1039

    def run_trainer(
        self,
1040
        stage: str,
1041
        dtype: str,
1042
        model_name: str,
1043
1044
1045
1046
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
1047
        distributed: bool = True,
1048
        fp32: bool = False,
1049
1050
1051
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
1052
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
1053
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
1054
1055
1056
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
1057
1058
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
1059
1060
1061
1062
1063
1064
1065
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
1066
1067
            --save_steps 0
            --eval_steps {eval_steps}
1068
1069
            --group_by_length
            --label_smoothing_factor 0.1
1070
1071
            --source_lang en
            --target_lang ro
1072
            --report_to none
1073
        """.split()
1074
1075
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

1076
1077
        if not fp32:
            args.extend([f"--{dtype}"])
1078

1079
1080
1081
1082
1083
1084
1085
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
1086
            --max_train_samples 16
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
1097
            --max_eval_samples 16
1098
1099
1100
1101
1102
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
1103
1104
1105
1106

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

1107
        # currently only works for bool args
1108
1109
1110
1111
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

1112
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1113
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
1114
        launcher = get_launcher(distributed)
1115
1116

        cmd = launcher + script + args + ds_args
1117
        # keep for quick debug
1118
1119
1120
1121
1122
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

1123
1124
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_clm(self, stage, dtype):
1125
1126
1127
1128
1129
1130
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
1131
            --model_name_or_path {GPT2_TINY}
1132
1133
1134
1135
1136
1137
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
1138
1139
1140
1141
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
1142
1143
            --num_train_epochs 1
            --warmup_steps 8
1144
            --block_size 64
1145
            --report_to none
1146
1147
            """.split()

1148
1149
        args.extend([f"--{dtype}"])

1150
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1151
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1152
        launcher = get_launcher(distributed=True)
1153
1154
1155
1156

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
1157
1158
        execute_subprocess_async(cmd, env=self.get_env())

1159
    def test_clm_from_config_zero3_fp16(self):
1160
1161
1162
1163
1164
1165
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
1166
            --tokenizer_name {GPT2_TINY}
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1183
        launcher = get_launcher(distributed=True)
1184
1185
1186
1187
1188
1189

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
1190
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)