test_deepspeed.py 46.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import itertools
18
import json
19
20
import os
import unittest
21
from copy import deepcopy
22

23
import datasets
24
from parameterized import parameterized
25

Stas Bekman's avatar
Stas Bekman committed
26
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
27
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
28
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_available, unset_hf_deepspeed_config
29
from transformers.testing_utils import (
30
    CaptureLogger,
31
    CaptureStd,
32
    CaptureStderr,
33
    LoggingLevel,
34
35
36
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
37
    mockenv_context,
38
    require_deepspeed,
39
    require_optuna,
40
41
42
43
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
44
from transformers.trainer_utils import get_last_checkpoint, set_seed
45
from transformers.utils import WEIGHTS_NAME, is_torch_bf16_gpu_available
46

47

48
if is_torch_available():
Stas Bekman's avatar
Stas Bekman committed
49
50
51
52
53
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
        get_regression_trainer,
    )
54
55


56
set_seed(42)
57

58
59
60
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

61
T5_SMALL = "t5-small"
62
T5_TINY = "patrickvonplaten/t5-tiny-random"
63
GPT2_TINY = "sshleifer/tiny-gpt2"
64
65


66
67
68
69
70
def load_json(path):
    with open(path) as f:
        return json.load(f)


Stas Bekman's avatar
Stas Bekman committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


109
110
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
111
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
112
    from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
113

114
115
116
117
118
119
120

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
    num_gpus = min(2, get_gpu_count()) if distributed else 1
Stas Bekman's avatar
Stas Bekman committed
121
    master_port = get_master_port(real_launcher=True)
122
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
123
124


125
126
ZERO2 = "zero2"
ZERO3 = "zero3"
127
128
129
130

FP16 = "fp16"
BF16 = "bf16"

131
stages = [ZERO2, ZERO3]
132
if is_torch_bf16_gpu_available():
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    dtypes = [FP16, BF16]
else:
    dtypes = [FP16]


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, dtypes))
147
148


149
150
151
152
153
154
155
156
157
158
@require_deepspeed
@require_torch_gpu
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

Stas Bekman's avatar
Stas Bekman committed
159
        master_port = get_master_port(real_launcher=False)
160
161
162
163
164
165
166
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
167

168
169
170
171
172
173
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

174
175
    def test_init_zero3_fp16(self):
        # test that zero.Init() works correctly under zero3/fp16
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)


210
class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus):
211
212
    def setUp(self):
        super().setUp()
213
214
215
216
217

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

Stas Bekman's avatar
Stas Bekman committed
218
        master_port = get_master_port(real_launcher=False)
219
220
221
222
223
224
225
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
226

227
228
229
230
        self.ds_config_file = {
            "zero2": f"{self.test_file_dir_str}/ds_config_zero2.json",
            "zero3": f"{self.test_file_dir_str}/ds_config_zero3.json",
        }
231
232
233

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
234
            config_zero2 = json.load(f)
235
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
236
            config_zero3 = json.load(f)
237
            # The following setting slows things down, so don't enable it by default unless needed by a test.
238
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
239
240
            config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False

241
242
243
244
        self.ds_config_dict = {
            "zero2": config_zero2,
            "zero3": config_zero3,
        }
245

246
247
248
249
250
251
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

252
253
254
    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
255

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

@require_deepspeed
@require_torch_gpu
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
    """

279
    # --- These tests are enough to run on one of zero stages --- #
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    def test_hf_ds_config_mismatch(self):
        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

332
333
334
335
336
337
338
339
340
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
341
342
343
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
344
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
345
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
346
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
347
348
349
350
351
352
353
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
354
355
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
356
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
357
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
358
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
359
360
361
362
363
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
364
        a = 0
365
        with mockenv_context(**self.dist_env_1_gpu):
366
367
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
368
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
369
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
370
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
371
372
373
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
374

375
    @require_deepspeed_aio
376
377
378
379
380
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
381
            nvme_config = {"device": "nvme", "nvme_path": nvme_path}
382
383
384
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
385
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
386
            with CaptureLogger(deepspeed_logger) as cl:
387
                trainer.train()
388
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
389

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    @require_optuna
    def test_hyperparameter_search(self):
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero3_dict = self.get_config_dict(ZERO3)

            # hyperparameter_search requires model_init() to recreate the model for each trial
            def model_init():
                config = RegressionModelConfig(a=0, b=0, double_output=False)
                model = RegressionPreTrainedModel(config)
                return model

            trainer = get_regression_trainer(
                local_rank=0,
                fp16=True,
                model_init=model_init,
                deepspeed=ds_config_zero3_dict,
            )

            n_trials = 3
            with CaptureLogger(deepspeed_logger) as cl:
                with CaptureStd() as cs:
                    trainer.hyperparameter_search(direction="maximize", n_trials=n_trials)
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
            self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output")
            self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output")

416
417
    # --- These tests need to run on both zero stages --- #

418
419
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_hf_optimizer_with_offload(self, stage, dtype):
420
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
421
422
423
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
424
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
425
        with mockenv_context(**self.dist_env_1_gpu):
426
            kwargs = {"local_rank": 0, "deepspeed": ds_config_dict}
427
428
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
429
            with CaptureLogger(deepspeed_logger) as cl:
430
                trainer.train()
431
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
432

433
434
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fake_notebook_no_launcher(self, stage, dtype):
435
436
437
438
439
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
440
441
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
442
            kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)}
443
444
445
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

446
            with CaptureLogger(deepspeed_logger) as cl:
447
                trainer.train()
448
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
449

450
451
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_early_get_last_lr(self, stage, dtype):
452
453
454
455
456
457
458
459
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
460
461
462
463
464
465
466
467
468
            kwargs = {
                "a": a,
                "b": b,
                "local_rank": 0,
                "train_len": 8,
                "deepspeed": self.get_config_dict(stage),
                "per_device_train_batch_size": 8,
                "logging_steps": 1,
            }
469
470
471
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

472
            trainer.train()
473
474
            post_train_a = trainer.model.a.item()

475
476
            # XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a
            # broken but a different qualitative outcome - as if optimizer did run
477
478
479
480
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
481
            if (stage == ZERO3 and dtype == FP16) or (dtype == BF16):
482
                return
483
484
485

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
486
            self.assertEqual(post_train_a, a)
487

488
489
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_gradient_accumulation(self, stage, dtype):
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

505
506
507
508
509
510
511
        kwargs = {
            "a": a,
            "b": b,
            "local_rank": 0,
            "train_len": train_len,
            "deepspeed": self.get_config_dict(stage),
        }
512
        kwargs[dtype] = True
513

514
515
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
516
517
                **kwargs,
                per_device_train_batch_size=16,
518
519
520
521
522
523
524
525
526
527
528
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
529
                **kwargs,
530
                per_device_train_batch_size=4,
531
                gradient_accumulation_steps=4,
532
533
534
535
536
537
538
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

539
540
541
542
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
543
544

        # see the note above how to get identical loss on a small bs
545
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=2)
546

547
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype):
548
549
550
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
551
552
553
554
555
556
557
558

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

559
560
        if dtype == "bf16":
            ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt")
561
562
563

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
564
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
565
566
567

            # common files
            for filename in file_list:
568
569
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
570
571
572
573
574
575

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
576
577
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
578

579
580
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_save_checkpoints(self, stage, dtype):
581
582
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

583
        freq = 5
584
        output_dir = self.get_auto_remove_tmp_dir()
585
        ds_config_dict = self.get_config_dict(stage)
586
587
588
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
589
        if stage == ZERO3:
590
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
591
592
593

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
594
595
596
597
598
            kwargs = {
                "output_dir": output_dir,
                "save_steps": freq,
                "deepspeed": ds_config_dict,
            }
599
600
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
601
602
603
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
604
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype)
605

606
607
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_errors(self, stage, dtype):
608
609
610
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
611
            kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict}
612
613
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
614
615
616
617
618
619
620
621

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
622

623
624
625
626
627
628
629
630
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

631
632
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_normal(self, stage, dtype):
633
634
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
635
        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
636
        ds_config_dict = self.get_config_dict(stage)
637
638
639
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
640
        if stage == ZERO3:
641
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
642

643
644
645
646
647
648
649
        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
650
        kwargs[dtype] = True
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

683
684
685
686
687
            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

688
689
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_state_dict_from_zero_checkpoint(self, stage, dtype):
690
691
692
693
694
695
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

696
697
698
699
700
701
702
703
704
705
        kwargs = {
            "output_dir": output_dir,
            "train_len": 4,
            "per_device_train_batch_size": 4,
            "num_train_epochs": 1,
            "save_strategy": "steps",
            "save_steps": 1,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
706
        kwargs[dtype] = True
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

723
724
725
726
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
727
        kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True}
728

729
730
        ds_config_zero3_dict = self.get_config_dict(ZERO3)
        ds_config_zero2_dict = self.get_config_dict(ZERO2)
731

732
        with mockenv_context(**self.dist_env_1_gpu):
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_best_model(self, stage, dtype):
        # Test that forced deepspeed reinit doesn't break the model. the forced re-init after
        # loading the best model in Trainer is there to workaround this bug in Deepspeed
        # https://github.com/microsoft/DeepSpeed/issues/1612
        #
        # The test is derived from a repro script submitted in this Issue:
        # https://github.com/huggingface/transformers/issues/17114
        #
        # One additional feature of this test is that we use a non-AdamW optimizer to test that
        # deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading
        # correctly

        from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer  # noqa

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # will use HF Trainer optimizer
        del ds_config_dict["scheduler"]  # will use HF Trainer scheduler
        # must use this setting to get the reload path exercised
        ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

778
        with mockenv_context(**self.dist_env_1_gpu):
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
            args_dict = {
                "per_gpu_train_batch_size": 1,
                "per_gpu_eval_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "learning_rate": 1e-4,
                "num_train_epochs": 1,
                "do_train": True,
                "do_eval": True,
                "optim": "adafactor",
                "evaluation_strategy": "steps",
                "eval_steps": 1,
                "save_strategy": "steps",
                "save_steps": 1,
                "load_best_model_at_end": True,
                "max_steps": 1,
                "deepspeed": ds_config_dict,
795
                "report_to": "none",
796
797
798
            }

            training_args = TrainingArguments(output_dir, **args_dict)
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
            tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
            model = T5ForConditionalGeneration.from_pretrained(T5_TINY)

            def _add_eos_to_examples(example):
                example["input_text"] = f"question: {example['question']}  context: {example['context']}"
                example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
                return example

            def _convert_to_features(example_batch):
                input_encodings = tokenizer.batch_encode_plus(
                    example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
                )
                target_encodings = tokenizer.batch_encode_plus(
                    example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
                )

                encodings = {
                    "input_ids": input_encodings["input_ids"],
                    "attention_mask": input_encodings["attention_mask"],
                    "labels": target_encodings["input_ids"],
                }

                return encodings

            def get_dataset():
                data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
825
                data_files = {"train": data_file, "validation": data_file}
826
827
828
829
830
831
832
                raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
                train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
                valid_dataset = deepcopy(train_dataset)
                return train_dataset, valid_dataset

            train_dataset, eval_dataset = get_dataset()

833
834
835
836
837
838
839
840
841
842
            trainer = Trainer(
                model=model,
                tokenizer=tokenizer,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=eval_dataset,
            )
            trainer.train()  # crash 1 was here
            trainer.evaluate()  # crash 2 was here

843
844
845
846

@slow
@require_deepspeed
@require_torch_gpu
847
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
848
    """This class is for testing via an external script - can do multiple gpus"""
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
865

866
    @require_torch_multi_gpu
867
868
869
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_basic_distributed(self, stage, dtype):
        self.run_and_check(stage=stage, dtype=dtype, distributed=True)
870

871
872
    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
873
        self.run_and_check(
874
            stage=ZERO3,
875
            dtype=FP16,
876
877
            eval_steps=1,
            distributed=False,
878
879
            do_train=False,
            do_eval=True,
880
        )
881

882
883
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_non_distributed(self, stage, dtype):
884
885
886
887
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
888
            dtype=dtype,
889
890
891
892
893
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
894
            fp32=True,
895
896
897
        )

    @require_torch_multi_gpu
898
899
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_distributed(self, stage, dtype):
900
901
902
903
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
904
            dtype=dtype,
905
906
907
908
909
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
910
            fp32=True,
911
912
        )

913
914
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_resume_train_not_from_ds_checkpoint(self, stage, dtype):
915
916
917
918
919
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
920
921
922
923
924
925
926
927
        kwargs = {
            "stage": stage,
            "dtype": dtype,
            "eval_steps": 1,
            "distributed": True,
            "do_train": do_train,
            "do_eval": do_eval,
        }
928
929
930
931
932
933
934
935
936
937

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

938
    @require_torch_multi_gpu
939
    @parameterized.expand(["bf16", "fp16", "fp32"])
940
    def test_inference(self, dtype):
941
        if dtype == "bf16" and not is_torch_bf16_gpu_available():
942
943
            self.skipTest("test requires bfloat16 hardware support")

944
945
        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
946
        fp32 = True if dtype == "fp32" else False
947
948
        self.run_and_check(
            stage=ZERO3,
949
            dtype=FP16,
950
951
952
953
954
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
955
            fp32=fp32,
956
957
        )

958
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
959
960
961
        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
962
963
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
964
965
966
967

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
968
969
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
970
971

    # XXX: need to do better validation beyond just that the run was successful
972
973
974
    def run_and_check(
        self,
        stage,
975
        dtype,
976
977
978
979
980
981
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
982
        fp32: bool = False,
983
984
        extra_args_str: str = None,
        remove_args_str: str = None,
985
986
    ):
        # we are doing quality testing so using a small real model
987
        output_dir = self.run_trainer(
988
            stage=stage,
989
            dtype=dtype,
990
            model_name=model_name,
991
            eval_steps=eval_steps,
992
            num_train_epochs=1,
993
994
            do_train=do_train,
            do_eval=do_eval,
995
            distributed=distributed,
996
            fp32=fp32,
997
998
999
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
1000

1001
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
1002
1003

        return output_dir
1004
1005
1006

    def run_trainer(
        self,
1007
        stage: str,
1008
        dtype: str,
1009
        model_name: str,
1010
1011
1012
1013
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
1014
        distributed: bool = True,
1015
        fp32: bool = False,
1016
1017
1018
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
1019
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
1020
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
1021
1022
1023
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
1024
1025
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
1026
1027
1028
1029
1030
1031
1032
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
1033
1034
            --save_steps 0
            --eval_steps {eval_steps}
1035
1036
            --group_by_length
            --label_smoothing_factor 0.1
1037
1038
            --source_lang en
            --target_lang ro
1039
            --report_to none
1040
        """.split()
1041
1042
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

1043
1044
        if not fp32:
            args.extend([f"--{dtype}"])
1045

1046
1047
1048
1049
1050
1051
1052
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
1053
            --max_train_samples 16
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
1064
            --max_eval_samples 16
1065
1066
1067
1068
1069
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
1070
1071
1072
1073

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

1074
        # currently only works for bool args
1075
1076
1077
1078
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

1079
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1080
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
1081
        launcher = get_launcher(distributed)
1082
1083

        cmd = launcher + script + args + ds_args
1084
        # keep for quick debug
1085
1086
1087
1088
1089
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

1090
1091
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_clm(self, stage, dtype):
1092
1093
1094
1095
1096
1097
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
1098
            --model_name_or_path {GPT2_TINY}
1099
1100
1101
1102
1103
1104
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
1105
1106
1107
1108
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
1109
1110
            --num_train_epochs 1
            --warmup_steps 8
1111
            --block_size 64
1112
            --report_to none
1113
1114
            """.split()

1115
1116
        args.extend([f"--{dtype}"])

1117
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1118
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1119
        launcher = get_launcher(distributed=True)
1120
1121
1122
1123

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
1124
1125
        execute_subprocess_async(cmd, env=self.get_env())

1126
    def test_clm_from_config_zero3_fp16(self):
1127
1128
1129
1130
1131
1132
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
1133
            --tokenizer_name {GPT2_TINY}
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1150
        launcher = get_launcher(distributed=True)
1151
1152
1153
1154
1155
1156

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
1157
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)