test_deepspeed.py 29.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import json
18
19
import os
import unittest
20
from copy import deepcopy
21

22
from parameterized import parameterized
23
from transformers import TrainingArguments, is_torch_available
24
from transformers.file_utils import WEIGHTS_NAME
25
from transformers.integrations import is_deepspeed_available
26
from transformers.testing_utils import (
27
    CaptureLogger,
28
    ExtendSysPath,
29
30
31
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
32
    mockenv_context,
33
34
35
36
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
37
38
39
from transformers.trainer_utils import set_seed


40
bindir = os.path.abspath(os.path.dirname(__file__))
41
42
43
44
with ExtendSysPath(f"{bindir}/.."):
    from test_trainer import TrainerIntegrationCommon  # noqa

    if is_torch_available():
45
        from test_trainer import RegressionModelConfig, RegressionPreTrainedModel, get_regression_trainer  # noqa
46
47


48
49
set_seed(42)
MBART_TINY = "sshleifer/tiny-mbart"
50
T5_SMALL = "t5-small"
51
52


53
54
55
56
57
def load_json(path):
    with open(path) as f:
        return json.load(f)


58
59
60
61
62
63
64
65
66
67
68
# a candidate for testing_utils
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)
    else:
        return test_case


69
70
71
72
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
    from transformers.integrations import deepspeed_config, is_deepspeed_zero3_enabled  # noqa

73
74
75
76
77
ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]


78
@require_deepspeed
79
@require_torch_gpu
80
81
82
83
84
class TrainerIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

85
86
87
88
89
90
91
92
93
94
95
96
97
    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
98
    """
99
100
101

    def setUp(self):
        super().setUp()
102
103
104
105
106

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

107
108
109
        self.dist_env_1_gpu = dict(
            MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
        )
110

111
112
113
114
115
116
117
118
119
120
121
122
        self.ds_config_file = {}
        self.ds_config_file[ZERO2] = f"{self.test_file_dir_str}/ds_config_zero2.json"
        self.ds_config_file[ZERO3] = f"{self.test_file_dir_str}/ds_config_zero3.json"

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        self.ds_config_dict = {}
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
            self.ds_config_dict[ZERO2] = json.load(f)
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
            self.ds_config_dict[ZERO3] = json.load(f)

    def get_config_dict(self, stage):
Patrick von Platen's avatar
Patrick von Platen committed
123
        """As the tests modify the dict, always make a copy"""
124
125
126
127
128
129
130
131
        config = deepcopy(self.ds_config_dict[stage])
        if stage == ZERO3:
            # This setting slows things down, so don't enable it by default unless needed by a test.
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
            config["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = False
        return config

    # --- These tests are enough to run on one of zero stages --- #
132
133
134
135
136
137
138
139
140
141

    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
142
143
144
145
146
147
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, deepspeed=ds_config_zero2_dict)
148
149
150
151
152
153
154
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
155
156
157
158
159
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, deepspeed=ds_config_zero2_dict)
160
161
162
163
164
165
166
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
        # this combo is not possible at the moment
        with mockenv_context(**self.dist_env_1_gpu):
167
168
169
170
171
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_zero2_dict)
172
173
            with self.assertRaises(Exception) as context:
                trainer.train()
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        self.assertTrue(
            "HF scheduler + DeepSpeed optimizer combination is not possible" in str(context.exception),
            f"got exception: {context.exception}",
        )

    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
            nvme_config = dict(device="nvme", nvme_path=nvme_path)
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_zero3_dict)
            with CaptureLogger(deepspeed_logger) as cs:
                trainer.train()
            self.assertIn("DeepSpeed info", cs.out, "expected DeepSpeed logger output but got none")

    # --- These tests need to run on both zero stages --- #

    @parameterized.expand(stages)
    def test_fp32(self, stage):
        ds_config_dict = self.get_config_dict(stage)
        ds_config_dict["fp16"]["enabled"] = False  # force non-fp16 mode

        # XXX: do we go via from_pretrained in zero 3 here? need to test zero.Init(dtype=torch.float)

        # XXX: rewrite this test once fp32 is supported by DeepSpeed
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_dict)
            with self.assertRaises(Exception) as context:
                trainer.train()
            self.assertIn(
                "ZeRO is only supported if fp16 is enabled",
                str(context.exception),
                f"got exception: {context.exception}",
            )
212

213
214
    @parameterized.expand(stages)
    def test_hf_optimizer_with_offload(self, stage):
215
        # must not allow non-DS optimizer when using ZERO-offload
216
217
218
219
220
221
222
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
        if stage == "stage2":
            ds_config_dict["zero_optimization"]["cpu_offload"] = True
        elif stage == "stage3":
            ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
223
        with mockenv_context(**self.dist_env_1_gpu):
224
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_dict)
225
226
            with self.assertRaises(Exception) as context:
                trainer.train()
227
228
229
230
231
            self.assertIn(
                "ZeRO Offload can only work with DeepSpeed optimizers",
                str(context.exception),
                f"got exception: {context.exception}",
            )
232

233
234
235
236
237
238
239
    @parameterized.expand(stages)
    def test_fake_notebook_no_launcher(self, stage):
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
240
241
242
243
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(local_rank=0, deepspeed=self.ds_config_file[stage])
            with CaptureLogger(deepspeed_logger) as cs:
244
                trainer.train()
245
            self.assertIn("DeepSpeed info", cs.out, "expected DeepSpeed logger output but got none")
246
247
248

    @parameterized.expand(stages)
    def test_early_get_last_lr(self, stage):
249
250
251
252
253
254
255
256
257
258
259
260
261
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
            trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=8,
262
                deepspeed=self.ds_config_file[stage],
263
264
265
266
                per_device_train_batch_size=8,
                logging_steps=1,
            )
            trainer.train()
267
268
269
270
271
272
            post_train_a = trainer.model.a.item()

            # XXX: for some reason the following check fails with zero3 - not a broken but a
            # different qualitative outcome - need to investigate at some point
            if stage == ZERO3:
                return
273
274
275

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
276
            self.assertEqual(post_train_a, a)
277

278
279
    @parameterized.expand(stages)
    def test_gradient_accumulation(self, stage):
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
301
                deepspeed=self.ds_config_file[stage],
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
                per_device_train_batch_size=8,
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
318
                deepspeed=self.ds_config_file[stage],
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
                per_device_train_batch_size=4,
                gradient_accumulation_steps=2,
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

        # training with half the batch size but accumulation steps as 2 should give the same weights
        self.assertEqual(no_grad_accum_a, yes_grad_accum_a)
        self.assertEqual(no_grad_accum_b, yes_grad_accum_b)

        # see the note above how to get identical loss on a small bs
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=5)

335
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage):
336
337
338
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

        # XXX: this can be recoded and then removed once we require deepspeed>0.3.13
        from packaging import version

        import deepspeed

        if version.parse(deepspeed.__version__) > version.parse("0.3.13"):
            ds_file_list.append("zero_pp_rank_0_mp_rank_00_optim_states.pt")
        else:
            ds_file_list.append("zero_pp_rank_0_mp_rank_00optim_states.pt")
356
357
358

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
359
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
360
361
362

            # common files
            for filename in file_list:
363
364
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
365
366
367
368
369
370

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
371
372
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
373

374
375
    @parameterized.expand(stages)
    def test_save_checkpoints(self, stage):
376
377
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

378
        freq = 5
379
        output_dir = self.get_auto_remove_tmp_dir()
380
        ds_config_dict = self.get_config_dict(stage)
381
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
382
383
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True
384
385
386
387
388
389
390
391
392
393
394

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                output_dir=output_dir,
                save_steps=freq,
                deepspeed=ds_config_dict,
            )
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
395
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage)
396

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    @parameterized.expand(stages)
    def test_can_resume_training_errors(self, stage):

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
            trainer = get_regression_trainer(output_dir=output_dir, deepspeed=ds_config_dict)

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
412

413
414
415
416
417
418
419
420
421
422
423
424
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

    @parameterized.expand(stages)
    def test_can_resume_training_normal(self, stage):
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
425
        output_dir = self.get_auto_remove_tmp_dir()
426
        ds_config_dict = self.get_config_dict(stage)
427
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
428
429
430
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        kwargs = dict(output_dir=output_dir, train_len=128, save_steps=5, learning_rate=0.1, deepspeed=ds_config_dict)

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    def test_config_object(self):
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
        kwargs = dict(output_dir=output_dir, train_len=8)

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero3_dict = self.get_config_dict("zero3")
            ds_config_zero2_dict = self.get_config_dict("zero2")

            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

496
497
498
499

@slow
@require_deepspeed
@require_torch_gpu
500
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
501
    """This class is for testing via an external script - can do multiple gpus"""
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
518

519
    @require_torch_multi_gpu
520
521
522
    @parameterized.expand(stages)
    def test_basic_distributed(self, stage):
        self.run_and_check(stage=stage, distributed=True)
523

524
525
    @parameterized.expand(stages)
    def test_do_eval_no_train(self, stage):
526
        # we should not fail if train is skipped
527
528
        self.run_and_check(
            stage=stage,
529
530
            eval_steps=1,
            distributed=False,
531
532
            do_train=False,
            do_eval=True,
533
        )
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    @parameterized.expand(stages)
    def test_resume_train_not_from_ds_checkpoint(self, stage):
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
        kwargs = dict(stage=stage, eval_steps=1, distributed=True, do_train=do_train, do_eval=do_eval)

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

    def do_checks(self, output_dir, do_train=True, do_eval=True):

        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
            self.assertGreater(train_metrics["train_samples_per_second"], 0.5)

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
            self.assertGreater(eval_metrics["eval_bleu"], 0)
564
565

    # XXX: need to do better validation beyond just that the run was successful
566
567
568
569
570
571
572
573
574
575
576
577
    def run_and_check(
        self,
        stage,
        eval_steps=10,
        distributed=True,
        do_train=True,
        do_eval=True,
        extra_args_str=None,
        remove_args_str=None,
    ):

        # we are doing quality testing so using a small real model
578
        output_dir = self.run_trainer(
579
580
581
            stage=stage,
            model_name=T5_SMALL,
            eval_steps=eval_steps,
582
            num_train_epochs=1,
583
584
            do_train=do_train,
            do_eval=do_eval,
585
586
587
588
            distributed=distributed,
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
589
590
591
592

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

        return output_dir
593
594
595

    def run_trainer(
        self,
596
        stage: str,
597
        model_name: str,
598
599
600
601
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
602
        distributed: bool = True,
603
604
605
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
606
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
607
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
608
609
610
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
611
612
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
613
614
615
616
617
618
619
620
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
            --logging_steps 0
621
622
            --save_steps 0
            --eval_steps {eval_steps}
623
624
625
            --group_by_length
            --label_smoothing_factor 0.1
            --adafactor
626
627
            --source_lang en
            --target_lang ro
628
            --report_to none
629
        """.split()
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
            --max_train_samples 100
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
650
            --max_eval_samples 100
651
652
653
654
655
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
656
657
658
659

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

660
        # currently only works for bool args
661
662
663
664
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

665
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
666
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
667
        launcher = self.get_launcher(distributed)
668
669

        cmd = launcher + script + args + ds_args
670
        # keep for quick debug
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

    @parameterized.expand(stages)
    def test_clm(self, stage):
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path sshleifer/tiny-gpt2
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --max_train_samples 10
692
            --max_eval_samples 10
693
694
695
696
697
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 128
698
            --report_to none
699
700
701
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
702
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
703
        launcher = self.get_launcher(distributed=True)
704
705
706
707

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
708
709
710
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir
711
712
713
714
715
716
717
718

    def get_launcher(self, distributed=False):
        # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
        # - it won't be able to handle that
        # 2. for now testing with just 2 gpus max (since some quality tests may give different
        # results with mode gpus because we use very little data)
        num_gpus = min(2, get_gpu_count()) if distributed else 1
        return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()