run_mlm.py 29.8 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=fill-mask
21
22
23
24
25
26
27
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
28
import warnings
29
from dataclasses import dataclass, field
30
from itertools import chain
31
32
from typing import Optional

33
import datasets
34
import evaluate
35
import torch
36
from datasets import load_dataset
37
38
39
40
41
42
43
44
45
46
47
48

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
49
    is_torch_xla_available,
50
51
    set_seed,
)
52
from transformers.trainer_utils import get_last_checkpoint
53
from transformers.utils import check_min_version, send_example_telemetry
54
from transformers.utils.versions import require_version
55
56


57
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
58
check_min_version("4.40.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
59

60
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
76
            "help": (
77
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
78
            )
79
80
81
82
83
84
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
85
86
87
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
88
89
90
91
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
92
93
        },
    )
94
95
96
97
98
99
100
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
101
102
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
103
104
105
106
107
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
108
109
110
111
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
112
113
    token: str = field(
        default=None,
114
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
115
            "help": (
116
117
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
118
            )
119
120
        },
    )
121
122
123
    use_auth_token: bool = field(
        default=None,
        metadata={
124
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
125
126
        },
    )
127
128
129
130
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
131
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
132
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
133
134
135
136
                "execute code present on the Hub on your local machine."
            )
        },
    )
137
138
139
140
141
142
143
144
145
146
    torch_dtype: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
                "dtype will be automatically derived from the model's weights."
            ),
            "choices": ["auto", "bfloat16", "float16", "float32"],
        },
    )
147
148
149
150
    low_cpu_mem_usage: bool = field(
        default=False,
        metadata={
            "help": (
151
                "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
152
153
154
155
                "set True will benefit LLM loading time and RAM consumption."
            )
        },
    )
156

157
158
159
160
161
162
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
184
185
186
187
188
189
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
190
191
192
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
195
196
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
197
198
199
200
201
202
203
204
205
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
206
207
208
209
210
211
212
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
216
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
217
218
        },
    )
219
220
221
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
226
227
        },
    )
228
    max_eval_samples: Optional[int] = field(
229
230
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
231
232
233
234
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
235
236
        },
    )
237
    streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
238
239

    def __post_init__(self):
240
241
242
        if self.streaming:
            require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")

243
244
245
246
247
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
248
249
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`train_file` should be a csv, a json or a txt file.")
250
251
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
252
253
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`validation_file` should be a csv, a json or a txt file.")
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

269
    if model_args.use_auth_token is not None:
270
271
272
273
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
274
275
276
277
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

278
279
280
281
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm", model_args, data_args)

282
283
    # Setup logging
    logging.basicConfig(
284
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
285
        datefmt="%m/%d/%Y %H:%M:%S",
286
        handlers=[logging.StreamHandler(sys.stdout)],
287
    )
288

289
290
291
292
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

293
294
295
296
297
298
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
299
300
301

    # Log on each process the small summary:
    logger.warning(
302
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
303
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
304
305
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
306
    logger.info(f"Training/evaluation parameters {training_args}")
307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

323
324
325
326
327
328
329
330
331
332
333
334
335
336
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
337
        raw_datasets = load_dataset(
338
339
340
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
341
            token=model_args.token,
342
            streaming=data_args.streaming,
343
344
345
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
346
347
348
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
349
                cache_dir=model_args.cache_dir,
350
                token=model_args.token,
351
                streaming=data_args.streaming,
352
            )
353
            raw_datasets["train"] = load_dataset(
354
355
356
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
357
                cache_dir=model_args.cache_dir,
358
                token=model_args.token,
359
                streaming=data_args.streaming,
360
            )
361
362
363
364
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
365
            extension = data_args.train_file.split(".")[-1]
366
        if data_args.validation_file is not None:
367
            data_files["validation"] = data_args.validation_file
368
            extension = data_args.validation_file.split(".")[-1]
369
370
        if extension == "txt":
            extension = "text"
371
372
373
374
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
375
            token=model_args.token,
376
        )
377
378
379
380
381
382
383
384

        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
385
                token=model_args.token,
386
387
388
389
390
391
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
392
                token=model_args.token,
393
394
            )

395
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
396
    # https://huggingface.co/docs/datasets/loading_datasets.
397
398
399
400
401
402

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
403
404
405
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
406
        "token": model_args.token,
407
        "trust_remote_code": model_args.trust_remote_code,
408
    }
409
    if model_args.config_name:
410
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
411
    elif model_args.model_name_or_path:
412
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
413
414
415
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
416
417
418
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
419
            logger.info(f"New config: {config}")
420

421
422
423
424
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
425
        "token": model_args.token,
426
        "trust_remote_code": model_args.trust_remote_code,
427
    }
428
    if model_args.tokenizer_name:
429
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
430
    elif model_args.model_name_or_path:
431
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
432
433
    else:
        raise ValueError(
434
            "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
435
436
437
438
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
439
440
441
442
443
        torch_dtype = (
            model_args.torch_dtype
            if model_args.torch_dtype in ["auto", None]
            else getattr(torch, model_args.torch_dtype)
        )
444
445
446
447
448
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
449
            revision=model_args.model_revision,
450
            token=model_args.token,
451
            trust_remote_code=model_args.trust_remote_code,
452
            torch_dtype=torch_dtype,
453
            low_cpu_mem_usage=model_args.low_cpu_mem_usage,
454
455
456
        )
    else:
        logger.info("Training new model from scratch")
457
        model = AutoModelForMaskedLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
458

459
460
461
462
463
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
464
465
466
467

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
468
        column_names = list(raw_datasets["train"].features)
469
    else:
470
        column_names = list(raw_datasets["validation"].features)
471
472
    text_column_name = "text" if "text" in column_names else column_names[0]

473
474
475
    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
476
            logger.warning(
477
478
479
                "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
                " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
                " override this default with `--block_size xxx`."
480
481
482
483
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
484
            logger.warning(
485
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
486
487
488
489
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

490
491
492
493
494
495
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
496
497
498
            examples[text_column_name] = [
                line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
            ]
499
            return tokenizer(
500
                examples[text_column_name],
501
502
                padding=padding,
                truncation=True,
503
                max_length=max_seq_length,
504
505
506
507
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )
508

509
        with training_args.main_process_first(desc="dataset map tokenization"):
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=[text_column_name],
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on dataset line_by_line",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=[text_column_name],
                )
525
526
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
527
528
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
529
        def tokenize_function(examples):
530
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
531

532
        with training_args.main_process_first(desc="dataset map tokenization"):
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=column_names,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on every text in dataset",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=column_names,
                )
548
549
550
551
552

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
553
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
554
            total_length = len(concatenated_examples[list(examples.keys())[0]])
555
556
557
            # We drop the small remainder, and if the total_length < max_seq_length  we exclude this batch and return an empty dict.
            # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
            total_length = (total_length // max_seq_length) * max_seq_length
558
559
560
561
562
563
564
565
566
567
568
569
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
570
        # https://huggingface.co/docs/datasets/process#map
571

572
        with training_args.main_process_first(desc="grouping texts together"):
573
574
575
576
577
578
579
580
581
582
583
584
585
            if not data_args.streaming:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc=f"Grouping texts in chunks of {max_seq_length}",
                )
            else:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                )
586

587
588
589
590
591
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
592
593
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
594
595
596
597
598

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
599
        if data_args.max_eval_samples is not None:
600
601
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
602

603
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
604
605
606
607
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
608
609
            return logits.argmax(dim=-1)

610
        metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
611
612
613
614
615
616
617
618
619
620
621
622

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics
            labels = labels.reshape(-1)
            preds = preds.reshape(-1)
            mask = labels != -100
            labels = labels[mask]
            preds = preds[mask]
            return metric.compute(predictions=preds, references=labels)

623
624
    # Data collator
    # This one will take care of randomly masking the tokens.
625
626
627
628
629
630
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )
631
632
633
634
635

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
636
637
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
638
639
        tokenizer=tokenizer,
        data_collator=data_collator,
640
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_xla_available() else None,
641
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
642
        if training_args.do_eval and not is_torch_xla_available()
643
        else None,
644
645
646
647
    )

    # Training
    if training_args.do_train:
648
649
650
651
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
652
653
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
654
        trainer.save_model()  # Saves the tokenizer too for easy upload
655
        metrics = train_result.metrics
656

657
658
659
660
661
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

662
663
664
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
665

666
667
668
669
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

670
        metrics = trainer.evaluate()
671

672
673
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
674
675
676
677
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
678
        metrics["perplexity"] = perplexity
679

680
681
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
682

683
684
685
686
687
688
689
690
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
691

692
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
693
        trainer.push_to_hub(**kwargs)
694
695
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
696

697
698
699
700
701
702
703
704

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()