"docs/source/en/perf_train_gpu_many.mdx" did not exist on "dbac8899fe49275a794e6be36fa32662e14fb6bc"
run_mlm.py 25.7 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=fill-mask
21
22
23
24
25
26
27
28
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
from dataclasses import dataclass, field
29
from itertools import chain
30
31
from typing import Optional

32
import datasets
33
from datasets import load_dataset, load_metric
34
35
36
37
38
39
40
41
42
43
44
45

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
46
    is_torch_tpu_available,
47
48
    set_seed,
)
49
from transformers.trainer_utils import get_last_checkpoint
50
from transformers.utils import check_min_version
51
from transformers.utils.versions import require_version
52
53


54
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
55
check_min_version("4.20.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
56

57
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
73
74
75
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
76
77
78
79
80
81
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
82
83
84
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
85
86
87
88
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
89
90
        },
    )
91
92
93
94
95
96
97
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
98
99
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
100
101
102
103
104
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
105
106
107
108
109
110
111
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
112
113
114
115
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
116
117
        },
    )
118

119
120
121
122
123
124
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
146
147
148
149
150
151
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
152
153
154
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
157
158
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
159
160
161
162
163
164
165
166
167
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
168
169
170
171
172
173
174
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
177
178
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
179
180
        },
    )
181
182
183
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
184
185
186
187
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
188
189
        },
    )
190
    max_eval_samples: Optional[int] = field(
191
192
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
195
196
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
197
198
        },
    )
199
200
201
202
203
204
205

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
206
207
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`train_file` should be a csv, a json or a txt file.")
208
209
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
210
211
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`validation_file` should be a csv, a json or a txt file.")
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
229
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
230
        datefmt="%m/%d/%Y %H:%M:%S",
231
        handlers=[logging.StreamHandler(sys.stdout)],
232
    )
233
234
235
236
237
238
239

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
240
241
242
243
244
245
246

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
247
    logger.info(f"Training/evaluation parameters {training_args}")
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

264
265
266
267
268
269
270
271
272
273
274
275
276
277
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
278
        raw_datasets = load_dataset(
279
280
281
282
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
283
284
285
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
286
287
288
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
289
                cache_dir=model_args.cache_dir,
290
                use_auth_token=True if model_args.use_auth_token else None,
291
            )
292
            raw_datasets["train"] = load_dataset(
293
294
295
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
296
                cache_dir=model_args.cache_dir,
297
                use_auth_token=True if model_args.use_auth_token else None,
298
            )
299
300
301
302
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
303
            extension = data_args.train_file.split(".")[-1]
304
        if data_args.validation_file is not None:
305
            data_files["validation"] = data_args.validation_file
306
            extension = data_args.validation_file.split(".")[-1]
307
308
        if extension == "txt":
            extension = "text"
309
310
311
312
313
314
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
315
316
317
318
319
320
321
322

        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
323
                use_auth_token=True if model_args.use_auth_token else None,
324
325
326
327
328
329
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
330
                use_auth_token=True if model_args.use_auth_token else None,
331
332
            )

333
334
335
336
337
338
339
340
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
341
342
343
344
345
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
346
    if model_args.config_name:
347
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
348
    elif model_args.model_name_or_path:
349
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
350
351
352
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
353
354
355
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
356
            logger.info(f"New config: {config}")
357

358
359
360
361
362
363
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
364
    if model_args.tokenizer_name:
365
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
366
    elif model_args.model_name_or_path:
367
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
368
369
370
371
372
373
374
375
376
377
378
379
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
380
381
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
382
383
384
385
386
387
388
389
390
391
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
392
        column_names = raw_datasets["train"].column_names
393
    else:
394
        column_names = raw_datasets["validation"].column_names
395
396
    text_column_name = "text" if "text" in column_names else column_names[0]

397
398
399
    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
400
            logger.warning(
401
402
403
404
405
406
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
407
            logger.warning(
408
409
410
411
412
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

413
414
415
416
417
418
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
419
420
421
            examples[text_column_name] = [
                line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
            ]
422
            return tokenizer(
423
                examples[text_column_name],
424
425
                padding=padding,
                truncation=True,
426
                max_length=max_seq_length,
427
428
429
430
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )
431

432
433
434
435
436
437
438
439
440
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=[text_column_name],
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset line_by_line",
            )
441
442
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
443
444
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
445
        def tokenize_function(examples):
446
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
447

448
449
450
451
452
453
454
455
456
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on every text in dataset",
            )
457
458
459
460
461

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
462
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
463
464
465
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
466
467
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
468
469
470
471
472
473
474
475
476
477
478
479
480
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
481

482
483
484
485
486
487
488
489
        with training_args.main_process_first(desc="grouping texts together"):
            tokenized_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {max_seq_length}",
            )
490

491
492
493
494
495
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
496
497
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
498
499
500
501
502

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
503
        if data_args.max_eval_samples is not None:
504
505
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
506

507
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
508
509
510
511
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
            return logits.argmax(dim=-1)

        metric = load_metric("accuracy")

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics
            labels = labels.reshape(-1)
            preds = preds.reshape(-1)
            mask = labels != -100
            labels = labels[mask]
            preds = preds[mask]
            return metric.compute(predictions=preds, references=labels)

527
528
    # Data collator
    # This one will take care of randomly masking the tokens.
529
530
531
532
533
534
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )
535
536
537
538
539

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
540
541
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
542
543
        tokenizer=tokenizer,
        data_collator=data_collator,
544
545
546
547
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
548
549
550
551
    )

    # Training
    if training_args.do_train:
552
553
554
555
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
556
557
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
558
        trainer.save_model()  # Saves the tokenizer too for easy upload
559
        metrics = train_result.metrics
560

561
562
563
564
565
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

566
567
568
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
569

570
571
572
573
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

574
        metrics = trainer.evaluate()
575

576
577
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
578
579
580
581
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
582
        metrics["perplexity"] = perplexity
583

584
585
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
586

587
588
589
590
591
592
593
594
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
595

596
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
597
        trainer.push_to_hub(**kwargs)
598
599
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
600

601
602
603
604
605
606
607
608

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()