run_mlm.py 22.8 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=masked-lm
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

31
import datasets
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from datasets import load_dataset

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
)
47
from transformers.trainer_utils import get_last_checkpoint
48
from transformers.utils import check_min_version
49
from transformers.utils.versions import require_version
50
51


52
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
53
check_min_version("4.9.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
54

55
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
79
80
81
82
83
84
85
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
            "help": "Override some existing default config settings when a model is trained from scratch. Example: "
            "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
        },
    )
86
87
88
89
90
91
92
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
93
94
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
95
96
97
98
99
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
100
101
102
103
104
105
106
107
108
109
110
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
111

112
113
114
115
116
117
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
139
140
141
142
143
144
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated."
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
159
160
161
162
163
164
165
166
167
168
169
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
170
171
172
173
174
175
176
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
177
    max_eval_samples: Optional[int] = field(
178
179
        default=None,
        metadata={
180
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
181
182
183
            "value if set."
        },
    )
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
212
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
213
        datefmt="%m/%d/%Y %H:%M:%S",
214
        handlers=[logging.StreamHandler(sys.stdout)],
215
    )
216
217
218
219
220
221
222

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
223
224
225
226
227
228
229

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
230
    logger.info(f"Training/evaluation parameters {training_args}")
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

247
248
249
250
251
252
253
254
255
256
257
258
259
260
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
261
262
263
264
265
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
266
267
268
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
269
                cache_dir=model_args.cache_dir,
270
            )
271
            raw_datasets["train"] = load_dataset(
272
273
274
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
275
                cache_dir=model_args.cache_dir,
276
            )
277
278
279
280
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
281
            extension = data_args.train_file.split(".")[-1]
282
        if data_args.validation_file is not None:
283
            data_files["validation"] = data_args.validation_file
284
            extension = data_args.validation_file.split(".")[-1]
285
286
        if extension == "txt":
            extension = "text"
287
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
288
289
290
291
292
293
294
295
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
296
297
298
299
300
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
301
    if model_args.config_name:
302
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
303
    elif model_args.model_name_or_path:
304
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
305
306
307
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
308
309
310
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
311

312
313
314
315
316
317
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
318
    if model_args.tokenizer_name:
319
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
320
    elif model_args.model_name_or_path:
321
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
322
323
324
325
326
327
328
329
330
331
332
333
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
334
335
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
336
337
338
339
340
341
342
343
344
345
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
346
        column_names = raw_datasets["train"].column_names
347
    else:
348
        column_names = raw_datasets["validation"].column_names
349
350
    text_column_name = "text" if "text" in column_names else column_names[0]

351
352
353
    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
354
            logger.warning(
355
356
357
358
359
360
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
361
            logger.warning(
362
363
364
365
366
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

367
368
369
370
371
372
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
373
374
375
            examples[text_column_name] = [
                line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
            ]
376
            return tokenizer(
377
                examples[text_column_name],
378
379
                padding=padding,
                truncation=True,
380
                max_length=max_seq_length,
381
382
383
384
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )
385

386
387
388
389
390
391
392
393
394
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=[text_column_name],
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset line_by_line",
            )
395
396
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
397
398
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
399
        def tokenize_function(examples):
400
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
401

402
403
404
405
406
407
408
409
410
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on every text in dataset",
            )
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
            concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
            total_length = (total_length // max_seq_length) * max_seq_length
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
434

435
436
437
438
439
440
441
442
        with training_args.main_process_first(desc="grouping texts together"):
            tokenized_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {max_seq_length}",
            )
443

444
445
446
447
448
449
450
451
452
453
454
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
455
456
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
457

458
459
    # Data collator
    # This one will take care of randomly masking the tokens.
460
461
462
463
464
465
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )
466
467
468
469
470

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
471
472
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
473
474
475
476
477
478
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
479
480
481
482
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
483
484
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
485
        trainer.save_model()  # Saves the tokenizer too for easy upload
486
        metrics = train_result.metrics
487

488
489
490
491
492
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

493
494
495
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
496

497
498
499
500
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

501
        metrics = trainer.evaluate()
502

503
504
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
505
506
507
508
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
509
        metrics["perplexity"] = perplexity
510

511
512
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
513

Sylvain Gugger's avatar
Sylvain Gugger committed
514
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
515
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
Sylvain Gugger's avatar
Sylvain Gugger committed
516
517
518
519
520
521
522
523
524
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
525

526
527
528
529
530
531
532
533

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()