run_mlm.py 29.1 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=fill-mask
21
22
23
24
25
26
27
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
28
import warnings
29
from dataclasses import dataclass, field
30
from itertools import chain
31
32
from typing import Optional

33
import datasets
34
import evaluate
35
from datasets import load_dataset
36
37
38
39
40
41
42
43
44
45
46
47

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
48
    is_torch_tpu_available,
49
50
    set_seed,
)
51
from transformers.trainer_utils import get_last_checkpoint
52
from transformers.utils import check_min_version, send_example_telemetry
53
from transformers.utils.versions import require_version
54
55


56
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
57
check_min_version("4.35.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
58

59
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
75
            "help": (
76
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
77
            )
78
79
80
81
82
83
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
84
85
86
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
89
90
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
91
92
        },
    )
93
94
95
96
97
98
99
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
100
101
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
102
103
104
105
106
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
107
108
109
110
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
111
112
    token: str = field(
        default=None,
113
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
114
            "help": (
115
116
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
117
            )
118
119
        },
    )
120
121
122
123
124
125
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
126
127
128
129
130
131
132
133
134
135
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will"
                "execute code present on the Hub on your local machine."
            )
        },
    )
136
137
138
139
140
141
142
143
144
    low_cpu_mem_usage: bool = field(
        default=False,
        metadata={
            "help": (
                "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded."
                "set True will benefit LLM loading time and RAM consumption."
            )
        },
    )
145

146
147
148
149
150
151
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
173
174
175
176
177
178
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
179
180
181
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
185
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
186
187
188
189
190
191
192
193
194
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
195
196
197
198
199
200
201
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
204
205
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
206
207
        },
    )
208
209
210
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
213
214
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
215
216
        },
    )
217
    max_eval_samples: Optional[int] = field(
218
219
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
220
221
222
223
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
224
225
        },
    )
226
    streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
227
228

    def __post_init__(self):
229
230
231
        if self.streaming:
            require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")

232
233
234
235
236
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
237
238
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`train_file` should be a csv, a json or a txt file.")
239
240
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
241
242
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`validation_file` should be a csv, a json or a txt file.")
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

258
259
260
261
262
263
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

264
265
266
267
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm", model_args, data_args)

268
269
    # Setup logging
    logging.basicConfig(
270
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
271
        datefmt="%m/%d/%Y %H:%M:%S",
272
        handlers=[logging.StreamHandler(sys.stdout)],
273
    )
274

275
276
277
278
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

279
280
281
282
283
284
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
285
286
287
288

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
289
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
290
291
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
292
    logger.info(f"Training/evaluation parameters {training_args}")
293

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

309
310
311
312
313
314
315
316
317
318
319
320
321
322
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
323
        raw_datasets = load_dataset(
324
325
326
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
327
            token=model_args.token,
328
            streaming=data_args.streaming,
329
330
331
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
332
333
334
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
335
                cache_dir=model_args.cache_dir,
336
                token=model_args.token,
337
                streaming=data_args.streaming,
338
            )
339
            raw_datasets["train"] = load_dataset(
340
341
342
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
343
                cache_dir=model_args.cache_dir,
344
                token=model_args.token,
345
                streaming=data_args.streaming,
346
            )
347
348
349
350
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
351
            extension = data_args.train_file.split(".")[-1]
352
        if data_args.validation_file is not None:
353
            data_files["validation"] = data_args.validation_file
354
            extension = data_args.validation_file.split(".")[-1]
355
356
        if extension == "txt":
            extension = "text"
357
358
359
360
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
361
            token=model_args.token,
362
        )
363
364
365
366
367
368
369
370

        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
371
                token=model_args.token,
372
373
374
375
376
377
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
378
                token=model_args.token,
379
380
            )

381
382
383
384
385
386
387
388
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
389
390
391
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
392
        "token": model_args.token,
393
        "trust_remote_code": model_args.trust_remote_code,
394
    }
395
    if model_args.config_name:
396
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
397
    elif model_args.model_name_or_path:
398
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
399
400
401
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
402
403
404
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
405
            logger.info(f"New config: {config}")
406

407
408
409
410
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
411
        "token": model_args.token,
412
        "trust_remote_code": model_args.trust_remote_code,
413
    }
414
    if model_args.tokenizer_name:
415
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
416
    elif model_args.model_name_or_path:
417
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
418
419
420
421
422
423
424
425
426
427
428
429
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
430
            revision=model_args.model_revision,
431
            token=model_args.token,
432
            trust_remote_code=model_args.trust_remote_code,
433
            low_cpu_mem_usage=model_args.low_cpu_mem_usage,
434
435
436
        )
    else:
        logger.info("Training new model from scratch")
437
        model = AutoModelForMaskedLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
438

439
440
441
442
443
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
444
445
446
447

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
448
        column_names = list(raw_datasets["train"].features)
449
    else:
450
        column_names = list(raw_datasets["validation"].features)
451
452
    text_column_name = "text" if "text" in column_names else column_names[0]

453
454
455
    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
456
            logger.warning(
457
458
459
                "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
                " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
                " override this default with `--block_size xxx`."
460
461
462
463
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
464
            logger.warning(
465
466
467
468
469
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

470
471
472
473
474
475
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
476
477
478
            examples[text_column_name] = [
                line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
            ]
479
            return tokenizer(
480
                examples[text_column_name],
481
482
                padding=padding,
                truncation=True,
483
                max_length=max_seq_length,
484
485
486
487
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )
488

489
        with training_args.main_process_first(desc="dataset map tokenization"):
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=[text_column_name],
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on dataset line_by_line",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=[text_column_name],
                )
505
506
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
507
508
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
509
        def tokenize_function(examples):
510
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
511

512
        with training_args.main_process_first(desc="dataset map tokenization"):
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=column_names,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on every text in dataset",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=column_names,
                )
528
529
530
531
532

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
533
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
534
            total_length = len(concatenated_examples[list(examples.keys())[0]])
535
536
537
            # We drop the small remainder, and if the total_length < max_seq_length  we exclude this batch and return an empty dict.
            # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
            total_length = (total_length // max_seq_length) * max_seq_length
538
539
540
541
542
543
544
545
546
547
548
549
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
550
        # https://huggingface.co/docs/datasets/process#map
551

552
        with training_args.main_process_first(desc="grouping texts together"):
553
554
555
556
557
558
559
560
561
562
563
564
565
            if not data_args.streaming:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc=f"Grouping texts in chunks of {max_seq_length}",
                )
            else:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                )
566

567
568
569
570
571
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
572
573
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
574
575
576
577
578

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
579
        if data_args.max_eval_samples is not None:
580
581
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
582

583
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
584
585
586
587
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
588
589
            return logits.argmax(dim=-1)

590
        metric = evaluate.load("accuracy")
591
592
593
594
595
596
597
598
599
600
601
602

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics
            labels = labels.reshape(-1)
            preds = preds.reshape(-1)
            mask = labels != -100
            labels = labels[mask]
            preds = preds[mask]
            return metric.compute(predictions=preds, references=labels)

603
604
    # Data collator
    # This one will take care of randomly masking the tokens.
605
606
607
608
609
610
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )
611
612
613
614
615

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
616
617
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
618
619
        tokenizer=tokenizer,
        data_collator=data_collator,
620
621
622
623
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
624
625
626
627
    )

    # Training
    if training_args.do_train:
628
629
630
631
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
632
633
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
634
        trainer.save_model()  # Saves the tokenizer too for easy upload
635
        metrics = train_result.metrics
636

637
638
639
640
641
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

642
643
644
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
645

646
647
648
649
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

650
        metrics = trainer.evaluate()
651

652
653
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
654
655
656
657
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
658
        metrics["perplexity"] = perplexity
659

660
661
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
662

663
664
665
666
667
668
669
670
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
671

672
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
673
        trainer.push_to_hub(**kwargs)
674
675
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
676

677
678
679
680
681
682
683
684

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()