Unverified Commit 9fa29959 authored by Philipp Schmid's avatar Philipp Schmid Committed by GitHub
Browse files

added cache_dir=model_args.cache_dir to all example with cache_dir arg (#11220)

parent 3312e96b
...@@ -230,17 +230,19 @@ def main(): ...@@ -230,17 +230,19 @@ def main():
# download the dataset. # download the dataset.
if data_args.dataset_name is not None: if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
if "validation" not in datasets.keys(): if "validation" not in datasets.keys():
datasets["validation"] = load_dataset( datasets["validation"] = load_dataset(
data_args.dataset_name, data_args.dataset_name,
data_args.dataset_config_name, data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]", split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
) )
datasets["train"] = load_dataset( datasets["train"] = load_dataset(
data_args.dataset_name, data_args.dataset_name,
data_args.dataset_config_name, data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]", split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
) )
else: else:
data_files = {} data_files = {}
...@@ -255,7 +257,7 @@ def main(): ...@@ -255,7 +257,7 @@ def main():
) )
if extension == "txt": if extension == "txt":
extension = "text" extension = "text"
datasets = load_dataset(extension, data_files=data_files) datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -239,17 +239,19 @@ def main(): ...@@ -239,17 +239,19 @@ def main():
# download the dataset. # download the dataset.
if data_args.dataset_name is not None: if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
if "validation" not in datasets.keys(): if "validation" not in datasets.keys():
datasets["validation"] = load_dataset( datasets["validation"] = load_dataset(
data_args.dataset_name, data_args.dataset_name,
data_args.dataset_config_name, data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]", split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
) )
datasets["train"] = load_dataset( datasets["train"] = load_dataset(
data_args.dataset_name, data_args.dataset_name,
data_args.dataset_config_name, data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]", split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
) )
else: else:
data_files = {} data_files = {}
...@@ -260,7 +262,7 @@ def main(): ...@@ -260,7 +262,7 @@ def main():
extension = data_args.train_file.split(".")[-1] extension = data_args.train_file.split(".")[-1]
if extension == "txt": if extension == "txt":
extension = "text" extension = "text"
datasets = load_dataset(extension, data_files=data_files) datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -475,17 +475,19 @@ if __name__ == "__main__": ...@@ -475,17 +475,19 @@ if __name__ == "__main__":
# download the dataset. # download the dataset.
if data_args.dataset_name is not None: if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
if "validation" not in datasets.keys(): if "validation" not in datasets.keys():
datasets["validation"] = load_dataset( datasets["validation"] = load_dataset(
data_args.dataset_name, data_args.dataset_name,
data_args.dataset_config_name, data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]", split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
) )
datasets["train"] = load_dataset( datasets["train"] = load_dataset(
data_args.dataset_name, data_args.dataset_name,
data_args.dataset_config_name, data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]", split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
) )
else: else:
data_files = {} data_files = {}
...@@ -496,7 +498,7 @@ if __name__ == "__main__": ...@@ -496,7 +498,7 @@ if __name__ == "__main__":
extension = data_args.train_file.split(".")[-1] extension = data_args.train_file.split(".")[-1]
if extension == "txt": if extension == "txt":
extension = "text" extension = "text"
datasets = load_dataset(extension, data_files=data_files) datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -236,17 +236,19 @@ def main(): ...@@ -236,17 +236,19 @@ def main():
# download the dataset. # download the dataset.
if data_args.dataset_name is not None: if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
if "validation" not in datasets.keys(): if "validation" not in datasets.keys():
datasets["validation"] = load_dataset( datasets["validation"] = load_dataset(
data_args.dataset_name, data_args.dataset_name,
data_args.dataset_config_name, data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]", split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
) )
datasets["train"] = load_dataset( datasets["train"] = load_dataset(
data_args.dataset_name, data_args.dataset_name,
data_args.dataset_config_name, data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]", split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
) )
else: else:
data_files = {} data_files = {}
...@@ -257,7 +259,7 @@ def main(): ...@@ -257,7 +259,7 @@ def main():
extension = data_args.train_file.split(".")[-1] extension = data_args.train_file.split(".")[-1]
if extension == "txt": if extension == "txt":
extension = "text" extension = "text"
datasets = load_dataset(extension, data_files=data_files) datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -268,10 +268,10 @@ def main(): ...@@ -268,10 +268,10 @@ def main():
if data_args.validation_file is not None: if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file data_files["validation"] = data_args.validation_file
extension = data_args.train_file.split(".")[-1] extension = data_args.train_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files) datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
else: else:
# Downloading and loading the swag dataset from the hub. # Downloading and loading the swag dataset from the hub.
datasets = load_dataset("swag", "regular") datasets = load_dataset("swag", "regular", cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -256,7 +256,7 @@ def main(): ...@@ -256,7 +256,7 @@ def main():
# download the dataset. # download the dataset.
if data_args.dataset_name is not None: if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
else: else:
data_files = {} data_files = {}
if data_args.train_file is not None: if data_args.train_file is not None:
...@@ -269,7 +269,7 @@ def main(): ...@@ -269,7 +269,7 @@ def main():
if data_args.test_file is not None: if data_args.test_file is not None:
data_files["test"] = data_args.test_file data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1] extension = data_args.test_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files, field="data") datasets = load_dataset(extension, data_files=data_files, field="data", cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -255,7 +255,7 @@ def main(): ...@@ -255,7 +255,7 @@ def main():
# download the dataset. # download the dataset.
if data_args.dataset_name is not None: if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
else: else:
data_files = {} data_files = {}
if data_args.train_file is not None: if data_args.train_file is not None:
...@@ -267,7 +267,7 @@ def main(): ...@@ -267,7 +267,7 @@ def main():
if data_args.test_file is not None: if data_args.test_file is not None:
data_files["test"] = data_args.test_file data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1] extension = data_args.test_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files, field="data") datasets = load_dataset(extension, data_files=data_files, field="data", cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -310,7 +310,7 @@ def main(): ...@@ -310,7 +310,7 @@ def main():
# download the dataset. # download the dataset.
if data_args.dataset_name is not None: if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
else: else:
data_files = {} data_files = {}
if data_args.train_file is not None: if data_args.train_file is not None:
...@@ -322,7 +322,7 @@ def main(): ...@@ -322,7 +322,7 @@ def main():
if data_args.test_file is not None: if data_args.test_file is not None:
data_files["test"] = data_args.test_file data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1] extension = data_args.test_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files) datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -294,7 +294,7 @@ def main(): ...@@ -294,7 +294,7 @@ def main():
# download the dataset. # download the dataset.
if data_args.dataset_name is not None: if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
else: else:
data_files = {} data_files = {}
if data_args.train_file is not None: if data_args.train_file is not None:
...@@ -306,7 +306,7 @@ def main(): ...@@ -306,7 +306,7 @@ def main():
if data_args.test_file is not None: if data_args.test_file is not None:
data_files["test"] = data_args.test_file data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1] extension = data_args.test_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files) datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -239,7 +239,7 @@ def main(): ...@@ -239,7 +239,7 @@ def main():
# download the dataset. # download the dataset.
if data_args.task_name is not None: if data_args.task_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset("glue", data_args.task_name) datasets = load_dataset("glue", data_args.task_name, cache_dir=model_args.cache_dir)
else: else:
# Loading a dataset from your local files. # Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed. # CSV/JSON training and evaluation files are needed.
...@@ -263,10 +263,10 @@ def main(): ...@@ -263,10 +263,10 @@ def main():
if data_args.train_file.endswith(".csv"): if data_args.train_file.endswith(".csv"):
# Loading a dataset from local csv files # Loading a dataset from local csv files
datasets = load_dataset("csv", data_files=data_files) datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir)
else: else:
# Loading a dataset from local json files # Loading a dataset from local json files
datasets = load_dataset("json", data_files=data_files) datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset at # See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
...@@ -209,17 +209,19 @@ def main(): ...@@ -209,17 +209,19 @@ def main():
# Downloading and loading xnli dataset from the hub. # Downloading and loading xnli dataset from the hub.
if training_args.do_train: if training_args.do_train:
if model_args.train_language is None: if model_args.train_language is None:
train_dataset = load_dataset("xnli", model_args.language, split="train") train_dataset = load_dataset("xnli", model_args.language, split="train", cache_dir=model_args.cache_dir)
else: else:
train_dataset = load_dataset("xnli", model_args.train_language, split="train") train_dataset = load_dataset(
"xnli", model_args.train_language, split="train", cache_dir=model_args.cache_dir
)
label_list = train_dataset.features["label"].names label_list = train_dataset.features["label"].names
if training_args.do_eval: if training_args.do_eval:
eval_dataset = load_dataset("xnli", model_args.language, split="validation") eval_dataset = load_dataset("xnli", model_args.language, split="validation", cache_dir=model_args.cache_dir)
label_list = eval_dataset.features["label"].names label_list = eval_dataset.features["label"].names
if training_args.do_predict: if training_args.do_predict:
test_dataset = load_dataset("xnli", model_args.language, split="test") test_dataset = load_dataset("xnli", model_args.language, split="test", cache_dir=model_args.cache_dir)
label_list = test_dataset.features["label"].names label_list = test_dataset.features["label"].names
# Labels # Labels
......
...@@ -229,7 +229,7 @@ def main(): ...@@ -229,7 +229,7 @@ def main():
# download the dataset. # download the dataset.
if data_args.dataset_name is not None: if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub. # Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
else: else:
data_files = {} data_files = {}
if data_args.train_file is not None: if data_args.train_file is not None:
...@@ -239,7 +239,7 @@ def main(): ...@@ -239,7 +239,7 @@ def main():
if data_args.test_file is not None: if data_args.test_file is not None:
data_files["test"] = data_args.test_file data_files["test"] = data_args.test_file
extension = data_args.train_file.split(".")[-1] extension = data_args.train_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files) datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html. # https://huggingface.co/docs/datasets/loading_datasets.html.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment