run_mlm.py 28.5 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=fill-mask
21
22
23
24
25
26
27
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
28
import warnings
29
from dataclasses import dataclass, field
30
from itertools import chain
31
32
from typing import Optional

33
import datasets
34
import evaluate
35
from datasets import load_dataset
36
37
38
39
40
41
42
43
44
45
46
47

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
48
    is_torch_tpu_available,
49
50
    set_seed,
)
51
from transformers.trainer_utils import get_last_checkpoint
52
from transformers.utils import check_min_version, send_example_telemetry
53
from transformers.utils.versions import require_version
54
55


56
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
57
check_min_version("4.32.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
58

59
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
75
            "help": (
76
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
77
            )
78
79
80
81
82
83
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
84
85
86
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
89
90
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
91
92
        },
    )
93
94
95
96
97
98
99
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
100
101
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
102
103
104
105
106
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
107
108
109
110
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
111
112
    token: str = field(
        default=None,
113
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
114
            "help": (
115
116
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
117
            )
118
119
        },
    )
120
121
122
123
124
125
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
126
127
128
129
130
131
132
133
134
    low_cpu_mem_usage: bool = field(
        default=False,
        metadata={
            "help": (
                "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded."
                "set True will benefit LLM loading time and RAM consumption."
            )
        },
    )
135

136
137
138
139
140
141
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
163
164
165
166
167
168
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
169
170
171
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
176
177
178
179
180
181
182
183
184
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
185
186
187
188
189
190
191
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
192
193
194
195
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
196
197
        },
    )
198
199
200
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
201
202
203
204
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
205
206
        },
    )
207
    max_eval_samples: Optional[int] = field(
208
209
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
212
213
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
214
215
        },
    )
216
    streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
217
218

    def __post_init__(self):
219
220
221
        if self.streaming:
            require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")

222
223
224
225
226
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
227
228
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`train_file` should be a csv, a json or a txt file.")
229
230
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
231
232
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`validation_file` should be a csv, a json or a txt file.")
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

248
249
250
251
252
253
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

254
255
256
257
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm", model_args, data_args)

258
259
    # Setup logging
    logging.basicConfig(
260
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
261
        datefmt="%m/%d/%Y %H:%M:%S",
262
        handlers=[logging.StreamHandler(sys.stdout)],
263
    )
264

265
266
267
268
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

269
270
271
272
273
274
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
275
276
277
278

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
279
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
280
281
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
282
    logger.info(f"Training/evaluation parameters {training_args}")
283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

299
300
301
302
303
304
305
306
307
308
309
310
311
312
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
313
        raw_datasets = load_dataset(
314
315
316
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
317
            token=model_args.token,
318
            streaming=data_args.streaming,
319
320
321
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
322
323
324
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
325
                cache_dir=model_args.cache_dir,
326
                token=model_args.token,
327
                streaming=data_args.streaming,
328
            )
329
            raw_datasets["train"] = load_dataset(
330
331
332
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
333
                cache_dir=model_args.cache_dir,
334
                token=model_args.token,
335
                streaming=data_args.streaming,
336
            )
337
338
339
340
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
341
            extension = data_args.train_file.split(".")[-1]
342
        if data_args.validation_file is not None:
343
            data_files["validation"] = data_args.validation_file
344
            extension = data_args.validation_file.split(".")[-1]
345
346
        if extension == "txt":
            extension = "text"
347
348
349
350
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
351
            token=model_args.token,
352
        )
353
354
355
356
357
358
359
360

        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
361
                token=model_args.token,
362
363
364
365
366
367
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
368
                token=model_args.token,
369
370
            )

371
372
373
374
375
376
377
378
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
379
380
381
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
382
        "token": model_args.token,
383
    }
384
    if model_args.config_name:
385
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
386
    elif model_args.model_name_or_path:
387
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
388
389
390
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
391
392
393
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
394
            logger.info(f"New config: {config}")
395

396
397
398
399
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
400
        "token": model_args.token,
401
    }
402
    if model_args.tokenizer_name:
403
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
404
    elif model_args.model_name_or_path:
405
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
406
407
408
409
410
411
412
413
414
415
416
417
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
418
            revision=model_args.model_revision,
419
            token=model_args.token,
420
            low_cpu_mem_usage=model_args.low_cpu_mem_usage,
421
422
423
424
425
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

426
427
428
429
430
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
431
432
433
434

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
435
        column_names = list(raw_datasets["train"].features)
436
    else:
437
        column_names = list(raw_datasets["validation"].features)
438
439
    text_column_name = "text" if "text" in column_names else column_names[0]

440
441
442
    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
443
            logger.warning(
444
445
446
                "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
                " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
                " override this default with `--block_size xxx`."
447
448
449
450
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
451
            logger.warning(
452
453
454
455
456
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

457
458
459
460
461
462
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
463
464
465
            examples[text_column_name] = [
                line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
            ]
466
            return tokenizer(
467
                examples[text_column_name],
468
469
                padding=padding,
                truncation=True,
470
                max_length=max_seq_length,
471
472
473
474
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )
475

476
        with training_args.main_process_first(desc="dataset map tokenization"):
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=[text_column_name],
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on dataset line_by_line",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=[text_column_name],
                )
492
493
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
494
495
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
496
        def tokenize_function(examples):
497
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
498

499
        with training_args.main_process_first(desc="dataset map tokenization"):
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=column_names,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on every text in dataset",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=column_names,
                )
515
516
517
518
519

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
520
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
521
            total_length = len(concatenated_examples[list(examples.keys())[0]])
522
523
524
            # We drop the small remainder, and if the total_length < max_seq_length  we exclude this batch and return an empty dict.
            # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
            total_length = (total_length // max_seq_length) * max_seq_length
525
526
527
528
529
530
531
532
533
534
535
536
537
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
538

539
        with training_args.main_process_first(desc="grouping texts together"):
540
541
542
543
544
545
546
547
548
549
550
551
552
            if not data_args.streaming:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc=f"Grouping texts in chunks of {max_seq_length}",
                )
            else:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                )
553

554
555
556
557
558
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
559
560
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
561
562
563
564
565

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
566
        if data_args.max_eval_samples is not None:
567
568
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
569

570
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
571
572
573
574
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
575
576
            return logits.argmax(dim=-1)

577
        metric = evaluate.load("accuracy")
578
579
580
581
582
583
584
585
586
587
588
589

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics
            labels = labels.reshape(-1)
            preds = preds.reshape(-1)
            mask = labels != -100
            labels = labels[mask]
            preds = preds[mask]
            return metric.compute(predictions=preds, references=labels)

590
591
    # Data collator
    # This one will take care of randomly masking the tokens.
592
593
594
595
596
597
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )
598
599
600
601
602

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
603
604
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
605
606
        tokenizer=tokenizer,
        data_collator=data_collator,
607
608
609
610
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
611
612
613
614
    )

    # Training
    if training_args.do_train:
615
616
617
618
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
619
620
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
621
        trainer.save_model()  # Saves the tokenizer too for easy upload
622
        metrics = train_result.metrics
623

624
625
626
627
628
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

629
630
631
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
632

633
634
635
636
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

637
        metrics = trainer.evaluate()
638

639
640
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
641
642
643
644
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
645
        metrics["perplexity"] = perplexity
646

647
648
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
649

650
651
652
653
654
655
656
657
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
658

659
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
660
        trainer.push_to_hub(**kwargs)
661
662
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
663

664
665
666
667
668
669
670
671

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()