Unverified Commit c9035e45 authored by Stas Bekman's avatar Stas Bekman Committed by GitHub
Browse files

fix: The 'warn' method is deprecated (#11105)

* The 'warn' method is deprecated

* fix test
parent 247bed38
...@@ -330,14 +330,14 @@ def main(): ...@@ -330,14 +330,14 @@ def main():
if data_args.block_size is None: if data_args.block_size is None:
block_size = tokenizer.model_max_length block_size = tokenizer.model_max_length
if block_size > 1024: if block_size > 1024:
logger.warn( logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx." "Picking 1024 instead. You can change that default value by passing --block_size xxx."
) )
block_size = 1024 block_size = 1024
else: else:
if data_args.block_size > tokenizer.model_max_length: if data_args.block_size > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
) )
......
...@@ -305,14 +305,14 @@ def main(): ...@@ -305,14 +305,14 @@ def main():
if args.block_size is None: if args.block_size is None:
block_size = tokenizer.model_max_length block_size = tokenizer.model_max_length
if block_size > 1024: if block_size > 1024:
logger.warn( logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx." "Picking 1024 instead. You can change that default value by passing --block_size xxx."
) )
block_size = 1024 block_size = 1024
else: else:
if args.block_size > tokenizer.model_max_length: if args.block_size > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The block_size passed ({args.block_size}) is larger than the maximum length for the model" f"The block_size passed ({args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
) )
......
...@@ -324,14 +324,14 @@ def main(): ...@@ -324,14 +324,14 @@ def main():
if data_args.max_seq_length is None: if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024: if max_seq_length > 1024:
logger.warn( logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
) )
max_seq_length = 1024 max_seq_length = 1024
else: else:
if data_args.max_seq_length > tokenizer.model_max_length: if data_args.max_seq_length > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
) )
......
...@@ -308,14 +308,14 @@ def main(): ...@@ -308,14 +308,14 @@ def main():
if args.max_seq_length is None: if args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024: if max_seq_length > 1024:
logger.warn( logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
) )
max_seq_length = 1024 max_seq_length = 1024
else: else:
if args.max_seq_length > tokenizer.model_max_length: if args.max_seq_length > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
) )
......
...@@ -319,7 +319,7 @@ def main(): ...@@ -319,7 +319,7 @@ def main():
text_column_name = "text" if "text" in column_names else column_names[0] text_column_name = "text" if "text" in column_names else column_names[0]
if data_args.max_seq_length > tokenizer.model_max_length: if data_args.max_seq_length > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
) )
......
...@@ -436,7 +436,7 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal ...@@ -436,7 +436,7 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal
raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.") raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
if args.version_2_with_negative: if args.version_2_with_negative:
logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.") logger.warning("tensorflow_datasets does not handle version 2 of SQuAD.")
tfds_examples = tfds.load("squad") tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate) examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
......
...@@ -73,7 +73,7 @@ class Seq2SeqTrainer(Trainer): ...@@ -73,7 +73,7 @@ class Seq2SeqTrainer(Trainer):
), "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss calculation or doing label smoothing." ), "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss calculation or doing label smoothing."
if self.config.pad_token_id is None and self.config.eos_token_id is not None: if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warn( logger.warning(
f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for padding.." f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for padding.."
) )
...@@ -127,7 +127,7 @@ class Seq2SeqTrainer(Trainer): ...@@ -127,7 +127,7 @@ class Seq2SeqTrainer(Trainer):
if self.lr_scheduler is None: if self.lr_scheduler is None:
self.lr_scheduler = self._get_lr_scheduler(num_training_steps) self.lr_scheduler = self._get_lr_scheduler(num_training_steps)
else: # ignoring --lr_scheduler else: # ignoring --lr_scheduler
logger.warn("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.") logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.")
def _get_lr_scheduler(self, num_training_steps): def _get_lr_scheduler(self, num_training_steps):
schedule_func = arg_to_scheduler[self.args.lr_scheduler] schedule_func = arg_to_scheduler[self.args.lr_scheduler]
......
...@@ -310,14 +310,14 @@ def main(): ...@@ -310,14 +310,14 @@ def main():
if data_args.max_seq_length is None: if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024: if max_seq_length > 1024:
logger.warn( logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
) )
max_seq_length = 1024 max_seq_length = 1024
else: else:
if data_args.max_seq_length > tokenizer.model_max_length: if data_args.max_seq_length > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
) )
......
...@@ -324,7 +324,7 @@ def main(): ...@@ -324,7 +324,7 @@ def main():
pad_on_right = tokenizer.padding_side == "right" pad_on_right = tokenizer.padding_side == "right"
if data_args.max_seq_length > tokenizer.model_max_length: if data_args.max_seq_length > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
) )
......
...@@ -313,7 +313,7 @@ def main(): ...@@ -313,7 +313,7 @@ def main():
pad_on_right = tokenizer.padding_side == "right" pad_on_right = tokenizer.padding_side == "right"
if data_args.max_seq_length > tokenizer.model_max_length: if data_args.max_seq_length > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
) )
......
...@@ -291,7 +291,7 @@ def main(): ...@@ -291,7 +291,7 @@ def main():
pad_on_right = tokenizer.padding_side == "right" pad_on_right = tokenizer.padding_side == "right"
if args.max_seq_length > tokenizer.model_max_length: if args.max_seq_length > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
) )
......
...@@ -343,7 +343,7 @@ def main(): ...@@ -343,7 +343,7 @@ def main():
pad_on_right = tokenizer.padding_side == "right" pad_on_right = tokenizer.padding_side == "right"
if args.max_seq_length > tokenizer.model_max_length: if args.max_seq_length > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
) )
......
...@@ -181,7 +181,7 @@ def main(): ...@@ -181,7 +181,7 @@ def main():
# Get datasets # Get datasets
if data_args.use_tfds: if data_args.use_tfds:
if data_args.version_2_with_negative: if data_args.version_2_with_negative:
logger.warn("tensorflow_datasets does not handle version 2 of SQuAD. Switch to version 1 automatically") logger.warning("tensorflow_datasets does not handle version 2 of SQuAD. Switch to version 1 automatically")
try: try:
import tensorflow_datasets as tfds import tensorflow_datasets as tfds
......
...@@ -629,7 +629,7 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal ...@@ -629,7 +629,7 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal
raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.") raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
if args.version_2_with_negative: if args.version_2_with_negative:
logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.") logger.warning("tensorflow_datasets does not handle version 2 of SQuAD.")
tfds_examples = tfds.load("squad") tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate) examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
......
...@@ -394,7 +394,7 @@ def main(): ...@@ -394,7 +394,7 @@ def main():
padding = "max_length" if data_args.pad_to_max_length else False padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warn( logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
) )
......
...@@ -367,7 +367,7 @@ def main(): ...@@ -367,7 +367,7 @@ def main():
padding = "max_length" if data_args.pad_to_max_length else False padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warn( logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
) )
......
...@@ -351,7 +351,7 @@ def main(): ...@@ -351,7 +351,7 @@ def main():
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
else: else:
logger.warn( logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ", "Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.", "\nIgnoring the model labels as a result.",
...@@ -360,7 +360,7 @@ def main(): ...@@ -360,7 +360,7 @@ def main():
label_to_id = {v: i for i, v in enumerate(label_list)} label_to_id = {v: i for i, v in enumerate(label_list)}
if data_args.max_seq_length > tokenizer.model_max_length: if data_args.max_seq_length > tokenizer.model_max_length:
logger.warn( logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
) )
......
...@@ -274,7 +274,7 @@ def main(): ...@@ -274,7 +274,7 @@ def main():
) )
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)} label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
else: else:
logger.warn( logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ", "Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.", "\nIgnoring the model labels as a result.",
......
...@@ -262,7 +262,7 @@ class PretrainedConfig(object): ...@@ -262,7 +262,7 @@ class PretrainedConfig(object):
# TPU arguments # TPU arguments
if kwargs.pop("xla_device", None) is not None: if kwargs.pop("xla_device", None) is not None:
logger.warn( logger.warning(
"The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can " "The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can "
"safely remove it from your `config.json` file." "safely remove it from your `config.json` file."
) )
......
...@@ -152,7 +152,7 @@ class SquadDataset(Dataset): ...@@ -152,7 +152,7 @@ class SquadDataset(Dataset):
) )
if self.dataset is None or self.examples is None: if self.dataset is None or self.examples is None:
logger.warn( logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in future run" f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in future run"
) )
else: else:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment