Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
aa1b09c5
Unverified
Commit
aa1b09c5
authored
Jul 20, 2023
by
Zach Mueller
Committed by
GitHub
Jul 20, 2023
Browse files
Change logic for logging in the examples (#24956)
Change logic
parent
89a1f342
Changes
22
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
20 additions
and
20 deletions
+20
-20
examples/pytorch/audio-classification/run_audio_classification.py
.../pytorch/audio-classification/run_audio_classification.py
+1
-1
examples/pytorch/contrastive-image-text/run_clip.py
examples/pytorch/contrastive-image-text/run_clip.py
+1
-1
examples/pytorch/image-classification/run_image_classification.py
.../pytorch/image-classification/run_image_classification.py
+1
-1
examples/pytorch/image-pretraining/run_mae.py
examples/pytorch/image-pretraining/run_mae.py
+1
-1
examples/pytorch/image-pretraining/run_mim.py
examples/pytorch/image-pretraining/run_mim.py
+1
-1
examples/pytorch/language-modeling/run_clm.py
examples/pytorch/language-modeling/run_clm.py
+1
-1
examples/pytorch/language-modeling/run_mlm.py
examples/pytorch/language-modeling/run_mlm.py
+1
-1
examples/pytorch/language-modeling/run_plm.py
examples/pytorch/language-modeling/run_plm.py
+1
-1
examples/pytorch/multiple-choice/run_swag.py
examples/pytorch/multiple-choice/run_swag.py
+1
-1
examples/pytorch/question-answering/run_qa.py
examples/pytorch/question-answering/run_qa.py
+1
-1
examples/pytorch/question-answering/run_qa_beam_search.py
examples/pytorch/question-answering/run_qa_beam_search.py
+1
-1
examples/pytorch/question-answering/run_seq2seq_qa.py
examples/pytorch/question-answering/run_seq2seq_qa.py
+1
-1
examples/pytorch/semantic-segmentation/run_semantic_segmentation.py
...ytorch/semantic-segmentation/run_semantic_segmentation.py
+1
-1
examples/pytorch/speech-recognition/run_speech_recognition_ctc.py
.../pytorch/speech-recognition/run_speech_recognition_ctc.py
+1
-1
examples/pytorch/speech-recognition/run_speech_recognition_ctc_adapter.py
.../speech-recognition/run_speech_recognition_ctc_adapter.py
+1
-1
examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py
...orch/speech-recognition/run_speech_recognition_seq2seq.py
+1
-1
examples/pytorch/summarization/run_summarization.py
examples/pytorch/summarization/run_summarization.py
+1
-1
examples/pytorch/text-classification/run_classification.py
examples/pytorch/text-classification/run_classification.py
+1
-1
examples/pytorch/text-classification/run_glue.py
examples/pytorch/text-classification/run_glue.py
+1
-1
examples/pytorch/text-classification/run_xnli.py
examples/pytorch/text-classification/run_xnli.py
+1
-1
No files found.
examples/pytorch/audio-classification/run_audio_classification.py
View file @
aa1b09c5
...
@@ -222,7 +222,7 @@ def main():
...
@@ -222,7 +222,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/contrastive-image-text/run_clip.py
View file @
aa1b09c5
...
@@ -259,7 +259,7 @@ def main():
...
@@ -259,7 +259,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/image-classification/run_image_classification.py
View file @
aa1b09c5
...
@@ -200,7 +200,7 @@ def main():
...
@@ -200,7 +200,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/image-pretraining/run_mae.py
View file @
aa1b09c5
...
@@ -199,7 +199,7 @@ def main():
...
@@ -199,7 +199,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/image-pretraining/run_mim.py
View file @
aa1b09c5
...
@@ -263,7 +263,7 @@ def main():
...
@@ -263,7 +263,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/language-modeling/run_clm.py
View file @
aa1b09c5
...
@@ -263,7 +263,7 @@ def main():
...
@@ -263,7 +263,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/language-modeling/run_mlm.py
View file @
aa1b09c5
...
@@ -263,7 +263,7 @@ def main():
...
@@ -263,7 +263,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
# Set the verbosity to info of the Transformers logger (on main process only):
# Set the verbosity to info of the Transformers logger (on main process only):
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/language-modeling/run_plm.py
View file @
aa1b09c5
...
@@ -254,7 +254,7 @@ def main():
...
@@ -254,7 +254,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/multiple-choice/run_swag.py
View file @
aa1b09c5
...
@@ -250,7 +250,7 @@ def main():
...
@@ -250,7 +250,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/question-answering/run_qa.py
View file @
aa1b09c5
...
@@ -252,7 +252,7 @@ def main():
...
@@ -252,7 +252,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/question-answering/run_qa_beam_search.py
View file @
aa1b09c5
...
@@ -251,7 +251,7 @@ def main():
...
@@ -251,7 +251,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/question-answering/run_seq2seq_qa.py
View file @
aa1b09c5
...
@@ -298,7 +298,7 @@ def main():
...
@@ -298,7 +298,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/semantic-segmentation/run_semantic_segmentation.py
View file @
aa1b09c5
...
@@ -289,7 +289,7 @@ def main():
...
@@ -289,7 +289,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/speech-recognition/run_speech_recognition_ctc.py
View file @
aa1b09c5
...
@@ -409,7 +409,7 @@ def main():
...
@@ -409,7 +409,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
# Set the verbosity to info of the Transformers logger (on main process only):
# Set the verbosity to info of the Transformers logger (on main process only):
if
is_main_process
(
training_args
.
local_rank
):
if
is_main_process
(
training_args
.
local_rank
):
...
...
examples/pytorch/speech-recognition/run_speech_recognition_ctc_adapter.py
View file @
aa1b09c5
...
@@ -405,7 +405,7 @@ def main():
...
@@ -405,7 +405,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
# Set the verbosity to info of the Transformers logger (on main process only):
# Set the verbosity to info of the Transformers logger (on main process only):
if
is_main_process
(
training_args
.
local_rank
):
if
is_main_process
(
training_args
.
local_rank
):
...
...
examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py
View file @
aa1b09c5
...
@@ -300,7 +300,7 @@ def main():
...
@@ -300,7 +300,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/summarization/run_summarization.py
View file @
aa1b09c5
...
@@ -337,7 +337,7 @@ def main():
...
@@ -337,7 +337,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/text-classification/run_classification.py
View file @
aa1b09c5
...
@@ -293,7 +293,7 @@ def main():
...
@@ -293,7 +293,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/text-classification/run_glue.py
View file @
aa1b09c5
...
@@ -241,7 +241,7 @@ def main():
...
@@ -241,7 +241,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
examples/pytorch/text-classification/run_xnli.py
View file @
aa1b09c5
...
@@ -200,7 +200,7 @@ def main():
...
@@ -200,7 +200,7 @@ def main():
# Log on each process the small summary:
# Log on each process the small summary:
logger
.
warning
(
logger
.
warning
(
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
f
"Process rank:
{
training_args
.
local_rank
}
, device:
{
training_args
.
device
}
, n_gpu:
{
training_args
.
n_gpu
}
"
+
f
"distributed training:
{
bool
(
training_args
.
local_rank
!=
-
1
)
}
, 16-bits training:
{
training_args
.
fp16
}
"
+
f
"distributed training:
{
training_args
.
parallel_mode
.
value
==
'distributed'
}
, 16-bits training:
{
training_args
.
fp16
}
"
)
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
logger
.
info
(
f
"Training/evaluation parameters
{
training_args
}
"
)
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment