test_deepspeed.py 54.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import itertools
18
import json
19
20
import os
import unittest
21
from copy import deepcopy
22
from functools import partial
23

24
import datasets
25
from parameterized import parameterized
26

27
import tests.trainer.test_trainer
28
import transformers
Stas Bekman's avatar
Stas Bekman committed
29
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
30
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
31
32
33
34
35
from transformers.integrations.deepspeed import (
    HfDeepSpeedConfig,
    is_deepspeed_available,
    unset_hf_deepspeed_config,
)
36
from transformers.testing_utils import (
37
    CaptureLogger,
38
    CaptureStd,
39
    CaptureStderr,
40
    LoggingLevel,
41
    TestCasePlus,
42
    backend_device_count,
43
    execute_subprocess_async,
44
    mockenv_context,
45
    require_deepspeed,
46
    require_optuna,
47
48
    require_torch_accelerator,
    require_torch_multi_accelerator,
49
    slow,
50
    torch_device,
51
)
52
from transformers.trainer_utils import get_last_checkpoint, set_seed
53
from transformers.utils import SAFE_WEIGHTS_NAME, is_torch_bf16_available_on_device
54

55

56
if is_torch_available():
57
58
    import torch

Stas Bekman's avatar
Stas Bekman committed
59
60
61
62
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
    )
63

64
65
66
    # hack to restore original logging level pre #21700
    get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")

67

68
set_seed(42)
69

70
71
72
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"

73
T5_SMALL = "google-t5/t5-small"
74
T5_TINY = "patrickvonplaten/t5-tiny-random"
75
GPT2_TINY = "sshleifer/tiny-gpt2"
76
GPTJ_TINY = "hf-internal-testing/tiny-random-gptj"
77
78


79
80
81
82
83
def load_json(path):
    with open(path) as f:
        return json.load(f)


Stas Bekman's avatar
Stas Bekman committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def require_deepspeed_aio(test_case):
    """
    Decorator marking a test that requires deepspeed aio (nvme)
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)

    import deepspeed
    from deepspeed.ops.aio import AsyncIOBuilder

    if not deepspeed.ops.__compatible_ops__[AsyncIOBuilder.NAME]:
        return unittest.skip("test requires deepspeed async-io")(test_case)
    else:
        return test_case


122
123
if is_deepspeed_available():
    from deepspeed.utils import logger as deepspeed_logger  # noqa
124
    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
125
    from transformers.integrations.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled  # noqa
126

127
128
129
130
131
132

def get_launcher(distributed=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
133
    num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
Stas Bekman's avatar
Stas Bekman committed
134
    master_port = get_master_port(real_launcher=True)
135
    return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
136
137


138
139
ZERO2 = "zero2"
ZERO3 = "zero3"
140
141
142
143

FP16 = "fp16"
BF16 = "bf16"

144
145
146
147
148
149
150
151
HF_OPTIM = "hf_optim"
HF_SCHEDULER = "hf_scheduler"
DS_OPTIM = "ds_optim"
DS_SCHEDULER = "ds_scheduler"

optims = [HF_OPTIM, DS_OPTIM]
schedulers = [HF_SCHEDULER, DS_SCHEDULER]

152
stages = [ZERO2, ZERO3]
153
if is_torch_bf16_available_on_device(torch_device):
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    dtypes = [FP16, BF16]
else:
    dtypes = [FP16]


def parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, dtypes))
168

169
170
params_with_optims_and_schedulers = list(itertools.product(stages, dtypes, optims, schedulers))

171

172
@require_deepspeed
173
@require_torch_accelerator
174
175
176
177
178
179
180
181
class CoreIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """
    Testing non-Trainer DeepSpeed integration
    """

    def setUp(self):
        super().setUp()

Stas Bekman's avatar
Stas Bekman committed
182
        master_port = get_master_port(real_launcher=False)
183
184
185
186
187
188
189
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
190

191
192
193
194
195
196
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

197
198
    def test_init_zero3_fp16(self):
        # test that zero.Init() works correctly under zero3/fp16
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    AutoModel.from_pretrained(T5_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    def test_init_zero3_missing_params(self):
        # test that zero.Init() for missing parameters works correctly under zero3
        import deepspeed
        import torch

        from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel

        class TinyGPT2WithUninitializedWeights(GPT2PreTrainedModel):
            def __init__(self, config):
                super().__init__(config)
                self.transformer = AutoModel.from_pretrained(GPT2_TINY, config=config)
                self.new_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=True)

            def forward(self, *args, **kwargs):
                transformer_outputs = self.transformer(*args, **kwargs)
                hidden_states = transformer_outputs[0]
                return self.new_head(hidden_states).float()

            def _init_weights(self, module):
                super()._init_weights(module)
                if module is self.new_head:
                    self.new_head.weight.data.fill_(-100.0)
                    self.new_head.bias.data.fill_(+100.0)

        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)
        self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight")
        with deepspeed.zero.GatheredParameters([model.new_head.weight, model.new_head.bias]):
            self.assertTrue(
                torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)),
            )
            self.assertTrue(
                torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)),
            )

        # now remove zero optimization
        del ds_config["zero_optimization"]
        dschf = HfDeepSpeedConfig(ds_config)

        self.assertFalse(dschf.is_zero3())
        self.assertFalse(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = TinyGPT2WithUninitializedWeights.from_pretrained(GPT2_TINY)
        self.assertNotIn("Detected DeepSpeed ZeRO-3", cl.out)
        self.assertRegex(cl.out, r"newly initialized.*new_head\.bias.*new_head\.weight")
        self.assertTrue(
            torch.allclose(model.new_head.weight, torch.tensor(-100.0, device=model.new_head.weight.device)),
        )
        self.assertTrue(
            torch.allclose(model.new_head.bias, torch.tensor(+100.0, device=model.new_head.bias.device)),
        )

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    def test_arange_bf16(self):
        # Tests that configuring DeepSpeed with 16 bits does not cause float `torch.arange()` tensors to be cast down.
        # NOTE -- this assumes that the function calls have the following downcast-preventing pattern, i.e.
        # `torch.arange(...,dtype=torch.int64)` followed by a cast like `.to(torch.float32)`. 馃毃 If this pattern is
        # NOT applied (e.g. `torch.arange(...,dtype=torch.float32)` is used), DeepSpeed can automatically cast it down
        # at init time. See https://github.com/huggingface/transformers/issues/28685 for more info.

        ds_config = {
            "train_batch_size": 1,
            "zero_optimization": {
                "stage": 3,
            },
            "bf16": {"enabled": True},
        }

        dschf = HfDeepSpeedConfig(ds_config)

        self.assertTrue(dschf.is_zero3())
        self.assertTrue(is_deepspeed_zero3_enabled())

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = AutoModel.from_pretrained(GPTJ_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        # The model weights are in BF16 as per deepspeed config
        self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16")
        good_deepspeed_sin_cos = model.h[0].attn.embed_positions

        # Monkeypatches the function that creates RoPE embeddings using the INCORRECT torch.arange() pattern, and
        # then recreates the model
        def bad_deepspeed_create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
            inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
            # Incorrect pattern here: torch.arange has dtype=torch.float32 as its argument, and it will automatically
            # converted to BF16 by DeepSpeed
            sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=inv_freq.dtype), inv_freq)
            return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)

        good_deepspeed_create_sinusoidal_positions = transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
        transformers.models.gptj.modeling_gptj.create_sinusoidal_positions = bad_deepspeed_create_sinusoidal_positions

        with LoggingLevel(logging.INFO):
            with mockenv_context(**self.dist_env_1_gpu):
                logger = logging.get_logger("transformers.modeling_utils")
                with CaptureLogger(logger) as cl:
                    model = AutoModel.from_pretrained(GPTJ_TINY)
        self.assertIn("Detected DeepSpeed ZeRO-3", cl.out)

        self.assertTrue(str(model.h[0].attn.q_proj.weight.dtype) == "torch.bfloat16")
        bad_deepspeed_sin_cos = model.h[0].attn.embed_positions

        # Compares the two values: the two sets of values are different, and the correct one matches the torch
        # (i.e. outside DeepSpeed) version.
        good_torch_sin_cos = good_deepspeed_create_sinusoidal_positions(
            model.config.max_position_embeddings, model.config.rotary_dim
        )
        self.assertFalse(torch.allclose(good_deepspeed_sin_cos, bad_deepspeed_sin_cos))
        self.assertTrue(torch.allclose(good_torch_sin_cos, good_deepspeed_sin_cos.cpu()))

        # Finally, we can see that the incorrect pattern is okay on vanilla torch, demostrating that this issue is
        # exclusive to DeepSpeed
        bad_torch_sin_cos = bad_deepspeed_create_sinusoidal_positions(
            model.config.max_position_embeddings, model.config.rotary_dim
        )
        self.assertTrue(torch.allclose(bad_torch_sin_cos, good_torch_sin_cos))

372

373
class TrainerIntegrationDeepSpeedWithCustomConfig(TestCasePlus):
374
375
    def setUp(self):
        super().setUp()
376
377
378
379
380

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

Stas Bekman's avatar
Stas Bekman committed
381
        master_port = get_master_port(real_launcher=False)
382
383
384
385
386
387
388
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }
389

390
391
392
393
        self.ds_config_file = {
            "zero2": f"{self.test_file_dir_str}/ds_config_zero2.json",
            "zero3": f"{self.test_file_dir_str}/ds_config_zero3.json",
        }
394
395
396

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
397
            config_zero2 = json.load(f)
398
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
399
            config_zero3 = json.load(f)
400
            # The following setting slows things down, so don't enable it by default unless needed by a test.
401
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
402
403
            config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False

404
405
406
407
        self.ds_config_dict = {
            "zero2": config_zero2,
            "zero3": config_zero3,
        }
408

409
410
411
412
413
414
    def tearDown(self):
        super().tearDown()

        # reset the ds config global so that tests state doesn't leak
        unset_hf_deepspeed_config()

415
416
417
    def get_config_dict(self, stage):
        # As some tests modify the dict, always make a copy
        return deepcopy(self.ds_config_dict[stage])
418

419
420

@require_deepspeed
421
@require_torch_accelerator
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
class TrainerIntegrationDeepSpeed(TrainerIntegrationDeepSpeedWithCustomConfig, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
    """

442
    # --- These tests are enough to run on one of zero stages --- #
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    def test_hf_ds_config_mismatch(self):
        ds_config = self.get_config_dict(ZERO2)

        # Purposefully configure these values to mismatch TrainingArguments values.
        # This currently doesn't cover all keys (but it could)
        per_device_train_batch_size = 2
        ds_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size + 2

        ds_config["train_batch_size"] = 1000

        gradient_accumulation_steps = 2
        ds_config["gradient_accumulation_steps"] = gradient_accumulation_steps + 2

        max_grad_norm = 1.0
        ds_config["gradient_clipping"] = max_grad_norm + 0.1

        adam_beta1, adam_beta2 = 0.9, 0.99
        ds_config["optimizer"]["params"]["betas"] = [adam_beta1 - 0.1, adam_beta2 - 0.1]

        fp16 = True
        ds_config["fp16"]["enabled"] = not fp16

        keys = [
            "per_device_train_batch_size",
            "train_batch_size",
            "gradient_accumulation_steps",
            "max_grad_norm",
            "betas",
            "fp16",
        ]

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                local_rank=0,
                fp16=fp16,
                deepspeed=ds_config,
                per_device_train_batch_size=per_device_train_batch_size,
                gradient_accumulation_steps=gradient_accumulation_steps,
                max_grad_norm=max_grad_norm,
                adam_beta1=adam_beta1,
                adam_beta2=adam_beta2,
            )
            with self.assertRaises(Exception) as context:
                trainer.train()

        for key in keys:
            self.assertTrue(
                key in str(context.exception),
                f"{key} is not in the exception message:\n{context.exception}",
            )

495
496
497
498
499
500
501
502
503
    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
504
505
506
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
507
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
508
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
509
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
510
511
512
513
514
515
516
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
517
518
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
519
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
520
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
521
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
522
523
524
525
526
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
527
        a = 0
528
        with mockenv_context(**self.dist_env_1_gpu):
529
530
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
531
            ds_config_zero2_dict["zero_optimization"]["offload_optimizer"]["device"] = "none"
532
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
533
534
535
536
            trainer = get_regression_trainer(a=a, local_rank=0, fp16=True, deepspeed=ds_config_zero2_dict)
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)
537

538
    @require_deepspeed_aio
539
540
541
542
543
    def test_stage3_nvme_offload(self):
        with mockenv_context(**self.dist_env_1_gpu):
            # this actually doesn't have to be on NVMe, any storage will do since this test only
            # runs a simple check that we can use some directory as if it were NVMe
            nvme_path = self.get_auto_remove_tmp_dir()
544
            nvme_config = {"device": "nvme", "nvme_path": nvme_path}
545
546
547
            ds_config_zero3_dict = self.get_config_dict(ZERO3)
            ds_config_zero3_dict["zero_optimization"]["offload_optimizer"] = nvme_config
            ds_config_zero3_dict["zero_optimization"]["offload_param"] = nvme_config
548
            trainer = get_regression_trainer(local_rank=0, fp16=True, deepspeed=ds_config_zero3_dict)
549
            with CaptureLogger(deepspeed_logger) as cl:
550
                trainer.train()
551
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
552

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
    @require_optuna
    def test_hyperparameter_search(self):
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_zero3_dict = self.get_config_dict(ZERO3)

            # hyperparameter_search requires model_init() to recreate the model for each trial
            def model_init():
                config = RegressionModelConfig(a=0, b=0, double_output=False)
                model = RegressionPreTrainedModel(config)
                return model

            trainer = get_regression_trainer(
                local_rank=0,
                fp16=True,
                model_init=model_init,
                deepspeed=ds_config_zero3_dict,
            )

            n_trials = 3
            with CaptureLogger(deepspeed_logger) as cl:
                with CaptureStd() as cs:
                    trainer.hyperparameter_search(direction="maximize", n_trials=n_trials)
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
            self.assertIn(f"Trial {n_trials-1} finished with value", cs.err, "expected hyperparameter_search output")
            self.assertIn("Best is trial", cs.err, "expected hyperparameter_search output")

579
580
    # --- These tests need to run on both zero stages --- #

581
582
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_hf_optimizer_with_offload(self, stage, dtype):
583
        # non-DS optimizers can be used with ZERO-offload (as long as they have both CPU and GPU implementation (except LAMB))
584
585
586
        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
        # force cpu offload
587
        ds_config_dict["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
588
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
589
        with mockenv_context(**self.dist_env_1_gpu):
590
            kwargs = {"local_rank": 0, "deepspeed": ds_config_dict}
591
592
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
593
            with CaptureLogger(deepspeed_logger) as cl:
594
                trainer.train()
595
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
596

597
598
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fake_notebook_no_launcher(self, stage, dtype):
599
600
601
602
603
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
604
605
        # to reset `deepspeed_logger.handlers[0].setStream(sys.stdout)` or directly capture from the deepspeed_logger.
        with mockenv_context(**self.dist_env_1_gpu):
606
            kwargs = {"local_rank": 0, "deepspeed": self.get_config_dict(stage)}
607
608
609
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

610
            with CaptureLogger(deepspeed_logger) as cl:
611
                trainer.train()
612
            self.assertIn("DeepSpeed info", cl.out, "expected DeepSpeed logger output but got none")
613

614
615
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_early_get_last_lr(self, stage, dtype):
616
617
618
619
620
621
622
623
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
624
625
626
627
628
629
630
631
632
            kwargs = {
                "a": a,
                "b": b,
                "local_rank": 0,
                "train_len": 8,
                "deepspeed": self.get_config_dict(stage),
                "per_device_train_batch_size": 8,
                "logging_steps": 1,
            }
633
634
635
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)

636
            trainer.train()
637
638
            post_train_a = trainer.model.a.item()

639
640
            # XXX: for some reason the following check fails with zero3/fp16 and any/bf16 - not a
            # broken but a different qualitative outcome - as if optimizer did run
641
642
643
644
            # oddly getting 1.0 for both a and b from 0.0 - there is a bug somewhere
            # print(trainer.model.a.item())
            # print(trainer.model.b.item())
            # need to investigate at some point
645
            if (stage == ZERO3 and dtype == FP16) or (dtype == BF16):
646
                return
647
648
649

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
650
            self.assertEqual(post_train_a, a)
651

652
653
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_gradient_accumulation(self, stage, dtype):
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

669
670
671
672
673
674
675
        kwargs = {
            "a": a,
            "b": b,
            "local_rank": 0,
            "train_len": train_len,
            "deepspeed": self.get_config_dict(stage),
        }
676
        kwargs[dtype] = True
677

678
679
        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
680
681
                **kwargs,
                per_device_train_batch_size=16,
682
683
684
685
686
687
688
689
690
691
692
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
693
                **kwargs,
694
                per_device_train_batch_size=4,
695
                gradient_accumulation_steps=4,
696
697
698
699
700
701
702
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

703
704
705
706
        # training with half the batch size but accumulation steps as 2 should give the same
        # weights, but sometimes get a slight difference still of 1e-6
        self.assertAlmostEqual(no_grad_accum_a, yes_grad_accum_a, places=5)
        self.assertAlmostEqual(no_grad_accum_b, yes_grad_accum_b, places=5)
707

708
709
        # Relative difference. See the note above how to get identical loss on a small bs
        self.assertTrue((no_grad_accum_loss - yes_grad_accum_loss) / (no_grad_accum_loss + 1e-15) <= 1e-3)
710

711
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage, dtype):
712
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints
713
        file_list = [SAFE_WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
714
715
716
717
718
719
720
721

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

722
723
        if dtype == "bf16":
            ds_file_list.append("bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt")
724
725
726

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
727
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
728
729
            # common files
            for filename in file_list:
730
731
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
732
733
734
735
736
737

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
738
739
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
740

741
742
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_save_checkpoints(self, stage, dtype):
743
744
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

745
        freq = 5
746
        output_dir = self.get_auto_remove_tmp_dir()
747
        ds_config_dict = self.get_config_dict(stage)
748
749
750
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
751
        if stage == ZERO3:
752
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
753
754
755

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
756
757
758
759
760
            kwargs = {
                "output_dir": output_dir,
                "save_steps": freq,
                "deepspeed": ds_config_dict,
            }
761
762
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
763
764
765
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
766
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage, dtype)
767

768
769
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_can_resume_training_errors(self, stage, dtype):
770
771
772
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
773
            kwargs = {"output_dir": output_dir, "deepspeed": ds_config_dict}
774
775
            kwargs[dtype] = True
            trainer = get_regression_trainer(**kwargs)
776
777
778
779
780
781
782
783

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
784

785
786
787
788
789
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")

790
791
    @parameterized.expand(params_with_optims_and_schedulers, name_func=parameterized_custom_name_func)
    def test_can_resume_training_normal(self, stage, dtype, optim, scheduler):
792
793
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
794
795
796
797
798
799

        # ToDo: Currently, hf_optim + hf_scheduler resumes with the correct states and
        # also has same losses for few steps but then slowly diverges. Need to figure it out.
        if optim == HF_OPTIM and scheduler == HF_SCHEDULER:
            return

800
        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
801
        ds_config_dict = self.get_config_dict(stage)
802
803
804
        if dtype == FP16:
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
        # XXX:
805
        if stage == ZERO3:
806
            ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True
807

808
809
810
811
812
813
        if optim == HF_OPTIM:
            del ds_config_dict["optimizer"]

        if scheduler == HF_SCHEDULER:
            del ds_config_dict["scheduler"]

814
815
816
817
818
819
820
        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
821
        kwargs[dtype] = True
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

854
855
856
857
858
            # Finally, should be able to resume with the same trainer/same deepspeed engine instance
            # XXX: but currently this not possible due DS bug: https://github.com/microsoft/DeepSpeed/issues/1612
            # trainer.train(resume_from_checkpoint=checkpoint)
            # a workaround needs to be used that re-creates the deepspeed engine

859
860
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_state_dict_from_zero_checkpoint(self, stage, dtype):
861
862
863
864
865
866
        # test that we can load fp32 weights directly from the zero checkpoint into the current model

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)

867
868
869
870
871
872
873
874
875
876
        kwargs = {
            "output_dir": output_dir,
            "train_len": 4,
            "per_device_train_batch_size": 4,
            "num_train_epochs": 1,
            "save_strategy": "steps",
            "save_steps": 1,
            "learning_rate": 0.1,
            "deepspeed": ds_config_dict,
        }
877
        kwargs[dtype] = True
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint_dir = get_last_checkpoint(output_dir)
            model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)

            (a1, b1) = model.a.item(), model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

894
    def test_ds_config_object(self):
895
896
897
        # test that we can switch from zero2 to zero3 in the same process for example
        # test is_zero, etc.
        output_dir = self.get_auto_remove_tmp_dir()
898
        kwargs = {"output_dir": output_dir, "train_len": 8, "fp16": True}
899

900
901
        ds_config_zero3_dict = self.get_config_dict(ZERO3)
        ds_config_zero2_dict = self.get_config_dict(ZERO2)
902

903
        with mockenv_context(**self.dist_env_1_gpu):
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test we can repeat that and with train this time
            trainer = get_regression_trainer(deepspeed=ds_config_zero3_dict, **kwargs)
            trainer.train()
            self.assertTrue(is_deepspeed_zero3_enabled())

            # test zero3 is disabled
            trainer = get_regression_trainer(deepspeed=ds_config_zero2_dict, **kwargs)
            self.assertFalse(is_deepspeed_zero3_enabled())

            # check config obj
            config = deepspeed_config()
            self.assertTrue(bool(config), "Deepspeed config should be accessible")

920
921
            # with accelerate integration below line is additionally required for this test to pass
            trainer.accelerator.state._reset_state()
922
923
924
925
926
927
            del trainer
            # now weakref should gc the global and we shouldn't get anything here
            config = deepspeed_config()
            self.assertFalse(is_deepspeed_zero3_enabled())
            self.assertFalse(bool(config), "Deepspeed config should not be accessible")

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_load_best_model(self, stage, dtype):
        # Test that forced deepspeed reinit doesn't break the model. the forced re-init after
        # loading the best model in Trainer is there to workaround this bug in Deepspeed
        # https://github.com/microsoft/DeepSpeed/issues/1612
        #
        # The test is derived from a repro script submitted in this Issue:
        # https://github.com/huggingface/transformers/issues/17114
        #
        # One additional feature of this test is that we use a non-AdamW optimizer to test that
        # deepspeed doesn't fallback to AdamW, which would prevent the optimizer states from loading
        # correctly

        from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer  # noqa

        output_dir = self.get_auto_remove_tmp_dir()  # "./xxx", after=False, before=False)

        ds_config_dict = self.get_config_dict(stage)
        del ds_config_dict["optimizer"]  # will use HF Trainer optimizer
        del ds_config_dict["scheduler"]  # will use HF Trainer scheduler
948
        ds_config_dict["zero_force_ds_cpu_optimizer"] = False  # offload is not efficient w/o CPUAdam
949
950
951
        # must use this setting to get the reload path exercised
        ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

952
        with mockenv_context(**self.dist_env_1_gpu):
953
            args_dict = {
954
955
                "per_device_train_batch_size": 1,
                "per_device_eval_batch_size": 1,
956
957
958
959
960
961
                "gradient_accumulation_steps": 1,
                "learning_rate": 1e-4,
                "num_train_epochs": 1,
                "do_train": True,
                "do_eval": True,
                "optim": "adafactor",
962
                "eval_strategy": "steps",
963
964
965
966
967
968
                "eval_steps": 1,
                "save_strategy": "steps",
                "save_steps": 1,
                "load_best_model_at_end": True,
                "max_steps": 1,
                "deepspeed": ds_config_dict,
969
                "report_to": "none",
970
971
972
            }

            training_args = TrainingArguments(output_dir, **args_dict)
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
            tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
            model = T5ForConditionalGeneration.from_pretrained(T5_TINY)

            def _add_eos_to_examples(example):
                example["input_text"] = f"question: {example['question']}  context: {example['context']}"
                example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
                return example

            def _convert_to_features(example_batch):
                input_encodings = tokenizer.batch_encode_plus(
                    example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
                )
                target_encodings = tokenizer.batch_encode_plus(
                    example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
                )

                encodings = {
                    "input_ids": input_encodings["input_ids"],
                    "attention_mask": input_encodings["attention_mask"],
                    "labels": target_encodings["input_ids"],
                }

                return encodings

            def get_dataset():
                data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
999
                data_files = {"train": data_file, "validation": data_file}
1000
1001
1002
1003
1004
1005
1006
                raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
                train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
                valid_dataset = deepcopy(train_dataset)
                return train_dataset, valid_dataset

            train_dataset, eval_dataset = get_dataset()

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            trainer = Trainer(
                model=model,
                tokenizer=tokenizer,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=eval_dataset,
            )
            trainer.train()  # crash 1 was here
            trainer.evaluate()  # crash 2 was here

1017
1018
1019

@slow
@require_deepspeed
1020
@require_torch_accelerator
1021
class TestDeepSpeedWithLauncher(TestCasePlus):
Patrick von Platen's avatar
Patrick von Platen committed
1022
    """This class is for testing via an external script - can do multiple gpus"""
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
1039

1040
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
1041
    @require_torch_multi_accelerator
1042
1043
    def test_basic_distributed(self, stage, dtype):
        self.run_and_check(stage=stage, dtype=dtype, distributed=True)
1044

1045
1046
    def test_do_eval_no_train(self):
        # testing only zero3 since zero2 makes no sense with inference
1047
        self.run_and_check(
1048
            stage=ZERO3,
1049
            dtype=FP16,
1050
1051
            eval_steps=1,
            distributed=False,
1052
1053
            do_train=False,
            do_eval=True,
1054
        )
1055

1056
1057
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_fp32_non_distributed(self, stage, dtype):
1058
1059
1060
1061
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
1062
            dtype=dtype,
1063
1064
1065
1066
1067
            model_name=T5_TINY,
            distributed=False,
            do_train=True,
            do_eval=True,
            quality_checks=False,
1068
            fp32=True,
1069
1070
        )

1071
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
1072
    @require_torch_multi_accelerator
1073
    def test_fp32_distributed(self, stage, dtype):
1074
1075
1076
1077
        # real model needs too much GPU memory under stage2+fp32, so using tiny random model here -
        # therefore no quality checks, just basic completion checks are done
        self.run_and_check(
            stage=stage,
1078
            dtype=dtype,
1079
1080
1081
1082
1083
            model_name=T5_TINY,
            distributed=True,
            do_train=True,
            do_eval=True,
            quality_checks=False,
1084
            fp32=True,
1085
1086
        )

1087
1088
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_resume_train_not_from_ds_checkpoint(self, stage, dtype):
1089
1090
1091
1092
1093
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
1094
1095
1096
1097
1098
1099
1100
1101
        kwargs = {
            "stage": stage,
            "dtype": dtype,
            "eval_steps": 1,
            "distributed": True,
            "do_train": do_train,
            "do_eval": do_eval,
        }
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

1112
    @parameterized.expand(["bf16", "fp16", "fp32"])
1113
    @require_torch_multi_accelerator
1114
    def test_inference(self, dtype):
1115
        if dtype == "bf16" and not is_torch_bf16_available_on_device(torch_device):
1116
1117
            self.skipTest("test requires bfloat16 hardware support")

1118
1119
        # this is just inference, so no optimizer should be loaded
        # it only works for z3 (makes no sense with z1-z2)
1120
        fp32 = True if dtype == "fp32" else False
1121
1122
        self.run_and_check(
            stage=ZERO3,
1123
            dtype=FP16,
1124
1125
1126
1127
1128
            model_name=T5_TINY,
            distributed=True,
            do_train=False,
            do_eval=True,
            quality_checks=False,
1129
            fp32=fp32,
1130
1131
        )

1132
    def do_checks(self, output_dir, do_train=True, do_eval=True, quality_checks=True):
1133
1134
1135
        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
1136
1137
            if quality_checks:
                self.assertGreater(train_metrics["train_samples_per_second"], 0.5)
1138
1139
1140
1141

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
1142
1143
            if quality_checks:
                self.assertGreater(eval_metrics["eval_bleu"], 1)
1144
1145

    # XXX: need to do better validation beyond just that the run was successful
1146
1147
1148
    def run_and_check(
        self,
        stage,
1149
        dtype,
1150
1151
1152
1153
1154
1155
        model_name: str = T5_SMALL,
        eval_steps: int = 10,
        distributed: bool = True,
        do_train: bool = True,
        do_eval: bool = True,
        quality_checks: bool = True,
1156
        fp32: bool = False,
1157
1158
        extra_args_str: str = None,
        remove_args_str: str = None,
1159
1160
    ):
        # we are doing quality testing so using a small real model
1161
        output_dir = self.run_trainer(
1162
            stage=stage,
1163
            dtype=dtype,
1164
            model_name=model_name,
1165
            eval_steps=eval_steps,
1166
            num_train_epochs=1,
1167
1168
            do_train=do_train,
            do_eval=do_eval,
1169
            distributed=distributed,
1170
            fp32=fp32,
1171
1172
1173
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
1174

1175
        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval, quality_checks=quality_checks)
1176
1177

        return output_dir
1178
1179
1180

    def run_trainer(
        self,
1181
        stage: str,
1182
        dtype: str,
1183
        model_name: str,
1184
1185
1186
1187
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
1188
        distributed: bool = True,
1189
        fp32: bool = False,
1190
1191
1192
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
1193
        max_len = 32
Sylvain Gugger's avatar
Sylvain Gugger committed
1194
        data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
1195
1196
1197
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
1198
1199
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
1200
1201
1202
1203
1204
1205
1206
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
1207
1208
            --save_steps 0
            --eval_steps {eval_steps}
1209
1210
            --group_by_length
            --label_smoothing_factor 0.1
1211
1212
            --source_lang en
            --target_lang ro
1213
            --report_to none
1214
        """.split()
1215
1216
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

1217
1218
        if not fp32:
            args.extend([f"--{dtype}"])
1219

1220
1221
1222
1223
1224
1225
1226
        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
1227
            --max_train_samples 16
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
1238
            --max_eval_samples 16
1239
1240
1241
1242
1243
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
1244
1245
1246
1247

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

1248
        # currently only works for bool args
1249
1250
1251
1252
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

1253
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1254
        script = [f"{self.examples_dir_str}/pytorch/translation/run_translation.py"]
1255
        launcher = get_launcher(distributed)
1256
1257

        cmd = launcher + script + args + ds_args
1258
        # keep for quick debug
1259
1260
1261
1262
1263
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

1264
1265
    @parameterized.expand(params, name_func=parameterized_custom_name_func)
    def test_clm(self, stage, dtype):
1266
1267
1268
1269
1270
1271
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
1272
            --model_name_or_path {GPT2_TINY}
1273
1274
1275
1276
1277
1278
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
1279
1280
1281
1282
            --max_train_samples 16
            --max_eval_samples 16
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
1283
1284
            --num_train_epochs 1
            --warmup_steps 8
1285
            --block_size 64
1286
            --report_to none
1287
1288
            """.split()

1289
1290
        args.extend([f"--{dtype}"])

1291
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
Sylvain Gugger's avatar
Sylvain Gugger committed
1292
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1293
        launcher = get_launcher(distributed=True)
1294
1295
1296
1297

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
1298
1299
        execute_subprocess_async(cmd, env=self.get_env())

1300
    def test_clm_from_config_zero3_fp16(self):
1301
1302
1303
1304
1305
1306
        # this test exercises AutoModel.from_config(config) - to ensure zero.Init is called

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_type gpt2
1307
            --tokenizer_name {GPT2_TINY}
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_train_samples 4
            --per_device_train_batch_size 2
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 8
            --fp16
            --report_to none
            """.split()

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_zero3.json".split()
        script = [f"{self.examples_dir_str}/pytorch/language-modeling/run_clm.py"]
1324
        launcher = get_launcher(distributed=True)
1325
1326
1327
1328
1329
1330

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        with CaptureStderr() as cs:
            execute_subprocess_async(cmd, env=self.get_env())
1331
        self.assertIn("Detected DeepSpeed ZeRO-3", cs.err)