samplers.py 29.5 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
5
import torch
import contextlib
6
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
import math

def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
    return abs(a*b) // math.gcd(a, b)
comfyanonymous's avatar
comfyanonymous committed
13

comfyanonymous's avatar
comfyanonymous committed
14
15
#The main sampling function shared by all the samplers
#Returns predicted noise
16
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
17
        def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
18
19
20
21
22
23
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
24

25
            adm_cond = None
26
27
            if 'adm_encoded' in cond[1]:
                adm_cond = cond[1]['adm_encoded']
28

29
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
Jacob Segal's avatar
Jacob Segal committed
30
31
32
            if 'mask' in cond[1]:
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
33
34
35
                mask_strength = 1.0
                if "mask_strength" in cond[1]:
                    mask_strength = cond[1]["mask_strength"]
Jacob Segal's avatar
Jacob Segal committed
36
37
38
                mask = cond[1]['mask']
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
39
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
40
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

            if 'mask' not in cond[1]:
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
65
66
67
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
comfyanonymous's avatar
comfyanonymous committed
68

69
70
71
            if adm_cond is not None:
                conditionning['c_adm'] = adm_cond

comfyanonymous's avatar
comfyanonymous committed
72
73
74
            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

            patches = None
            if 'gligen' in cond[1]:
                gligen = cond[1]['gligen']
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
                    gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
                else:
                    gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
90
91

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
92
93
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
94
95
96
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
103
104
105
106
                s1 = c1['c_crossattn'].shape
                s2 = c2['c_crossattn'].shape
                if s1 != s2:
                    if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
                        return False

                    mult_min = lcm(s1[1], s2[1])
                    diff = mult_min // min(s1[1], s2[1])
                    if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
                        return False
comfyanonymous's avatar
comfyanonymous committed
107
108
109
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
110
111
112
            if 'c_adm' in c1:
                if c1['c_adm'].shape != c2['c_adm'].shape:
                    return False
comfyanonymous's avatar
comfyanonymous committed
113
114
            return True

comfyanonymous's avatar
comfyanonymous committed
115
116
117
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
118
119

            #control
comfyanonymous's avatar
comfyanonymous committed
120
121
122
123
124
125
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

126
127
128
129
130
131
132
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
133
134
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
135
136
137
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
138
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
139
            crossattn_max_len = 0
comfyanonymous's avatar
comfyanonymous committed
140
141
            for x in c_list:
                if 'c_crossattn' in x:
comfyanonymous's avatar
comfyanonymous committed
142
143
144
145
146
147
                    c = x['c_crossattn']
                    if crossattn_max_len == 0:
                        crossattn_max_len = c.shape[1]
                    else:
                        crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
                    c_crossattn.append(c)
comfyanonymous's avatar
comfyanonymous committed
148
149
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
150
151
                if 'c_adm' in x:
                    c_adm.append(x['c_adm'])
comfyanonymous's avatar
comfyanonymous committed
152
            out = {}
comfyanonymous's avatar
comfyanonymous committed
153
154
155
156
157
158
159
160
            c_crossattn_out = []
            for c in c_crossattn:
                if c.shape[1] < crossattn_max_len:
                    c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
                c_crossattn_out.append(c)

            if len(c_crossattn_out) > 0:
                out['c_crossattn'] = [torch.cat(c_crossattn_out)]
comfyanonymous's avatar
comfyanonymous committed
161
162
            if len(c_concat) > 0:
                out['c_concat'] = [torch.cat(c_concat)]
163
164
            if len(c_adm) > 0:
                out['c_adm'] = torch.cat(c_adm)
comfyanonymous's avatar
comfyanonymous committed
165
166
            return out

167
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
comfyanonymous's avatar
comfyanonymous committed
168
169
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
170
171
172
173
174
175

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
176

177
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
178
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
179
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
180
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
181
                    continue
182
183
184

                to_run += [(p, COND)]
            for x in uncond:
comfyanonymous's avatar
comfyanonymous committed
185
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
186
187
188
189
190
191
192
193
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
194
                to_batch_temp = []
195
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
196
197
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
198
199
200
201
202
203
204
205
206

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
207
208
209
210
211
212

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
213
                control = None
214
                patches = None
215
216
217
218
219
220
221
222
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
223
                    control = p[4]
224
                    patches = p[5]
225
226
227

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
228
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
229
                timestep_ = torch.cat([timestep] * batch_chunks)
230

comfyanonymous's avatar
comfyanonymous committed
231
                if control is not None:
232
                    c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
233

234
                transformer_options = {}
235
                if 'transformer_options' in model_options:
236
237
238
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
239
240
241
242
243
244
245
246
247
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
248
249

                c['transformer_options'] = transformer_options
250

comfyanonymous's avatar
comfyanonymous committed
251
                output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
252
                del input_x
253

254
255
                model_management.throw_exception_if_processing_interrupted()

256
257
258
259
260
261
262
                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
                del mult

            out_cond /= out_count
            del out_count
267
268
269
270
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
271
272


273
        max_total_area = model_management.maximum_batch_area()
274
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
275
276
277
278
        if "sampler_cfg_function" in model_options:
            return model_options["sampler_cfg_function"](cond, uncond, cond_scale)
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
279

comfyanonymous's avatar
comfyanonymous committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
294
295
    def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options)
comfyanonymous's avatar
comfyanonymous committed
296
297
298
299
        return out


class KSamplerX0Inpaint(torch.nn.Module):
300
301
302
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
303
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}):
304
305
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
306
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
307
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options)
308
309
310
311
312
313
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
314

comfyanonymous's avatar
comfyanonymous committed
315
316
317
318
319
320
321
322
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
323
324
325
326
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
327
328
329
330
        ts = ddim_timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
comfyanonymous's avatar
comfyanonymous committed
331
332
333
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
334
335
336
337
338
339
340
341
342
def blank_inpaint_image_like(latent_image):
    blank_image = torch.ones_like(latent_image)
    # these are the values for "zero" in pixel space translated to latent space
    blank_image[:,0] *= 0.8223
    blank_image[:,1] *= -0.6876
    blank_image[:,2] *= 0.6364
    blank_image[:,3] *= 0.1380
    return blank_image

Jacob Segal's avatar
Jacob Segal committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

Jacob Segal's avatar
Jacob Segal committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def resolve_cond_masks(conditions, h, w, device):
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
        if 'mask' in c[1]:
            mask = c[1]['mask']
            mask = mask.to(device=device)
            modified = c[1].copy()
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
            if mask.shape[2] != h or mask.shape[3] != w:
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
380
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
381
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
382
383
384
385
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
386
                else:
Jacob Segal's avatar
Jacob Segal committed
387
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
388
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
389
390
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
391
392
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
393
394
395
396

            modified['mask'] = mask
            conditions[i] = [c[0], modified]

comfyanonymous's avatar
comfyanonymous committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
426

427
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
428
429
430
431
432
433
434
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
435
436
            if name in x[1] and x[1][name] is not None:
                cond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
437
438
439
440
441
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
442
443
            if name in x[1] and x[1][name] is not None:
                uncond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
444
445
446
447
448
449
450
451
452
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
453
        if name in o[1] and o[1][name] is not None:
comfyanonymous's avatar
comfyanonymous committed
454
            n = o[1].copy()
455
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
456
457
458
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
459
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
460
461
            uncond[temp[1]] = [o[0], n]

462

comfyanonymous's avatar
comfyanonymous committed
463
def encode_adm(conds, batch_size, device, noise_augmentor=None):
464
465
    for t in range(len(conds)):
        x = conds[t]
comfyanonymous's avatar
comfyanonymous committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        adm_out = None
        if noise_augmentor is not None:
            if 'adm' in x[1]:
                adm_inputs = []
                weights = []
                noise_aug = []
                adm_in = x[1]["adm"]
                for adm_c in adm_in:
                    adm_cond = adm_c[0].image_embeds
                    weight = adm_c[1]
                    noise_augment = adm_c[2]
                    noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
                    c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
                    adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
                    weights.append(weight)
                    noise_aug.append(noise_augment)
                    adm_inputs.append(adm_out)

                if len(noise_aug) > 1:
                    adm_out = torch.stack(adm_inputs).sum(0)
                    #TODO: add a way to control this
                    noise_augment = 0.05
                    noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
                    c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
                    adm_out = torch.cat((c_adm, noise_level_emb), 1)
            else:
                adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device)
493
        else:
comfyanonymous's avatar
comfyanonymous committed
494
495
496
497
498
            if 'adm' in x[1]:
                adm_out = x[1]["adm"].to(device)
        if adm_out is not None:
            x[1] = x[1].copy()
            x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size)
499
500
501

    return conds

502

comfyanonymous's avatar
comfyanonymous committed
503
class KSampler:
504
    SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
505
506
    SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
                "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde",
507
                "dpmpp_2m", "dpmpp_2m_sde", "ddim", "uni_pc", "uni_pc_bh2"]
comfyanonymous's avatar
comfyanonymous committed
508

509
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
510
        self.model = model
comfyanonymous's avatar
comfyanonymous committed
511
        self.model_denoise = CFGNoisePredictor(self.model)
comfyanonymous's avatar
comfyanonymous committed
512
        if self.model.parameterization == "v":
comfyanonymous's avatar
comfyanonymous committed
513
            self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
514
        else:
comfyanonymous's avatar
comfyanonymous committed
515
516
517
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
        self.model_wrap.parameterization = self.model.parameterization
        self.model_k = KSamplerX0Inpaint(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
518
519
520
521
522
523
524
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
525
526
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
527
        self.set_steps(steps, denoise)
528
        self.denoise = denoise
529
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
530

comfyanonymous's avatar
comfyanonymous committed
531
532
533
534
535
536
537
538
539
540
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
541
542
        elif self.scheduler == "exponential":
            sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
543
544
545
546
547
548
549
550
551
552
553
554
555
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps)
        elif self.scheduler == "ddim_uniform":
            sigmas = ddim_scheduler(self.model_wrap, steps)
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
556
557
    def set_steps(self, steps, denoise=None):
        self.steps = steps
558
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
559
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
560
561
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
562
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
563
564
            self.sigmas = sigmas[-(steps + 1):]

565
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False):
566
567
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
568
569
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
570
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
571
572
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
573
574
575
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
576
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
577
578
579
580
581
582
583
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
584

comfyanonymous's avatar
comfyanonymous committed
585
586
        positive = positive[:]
        negative = negative[:]
Jacob Segal's avatar
Jacob Segal committed
587
588
589
590

        resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
        resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)

comfyanonymous's avatar
comfyanonymous committed
591
592
593
594
595
596
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

597
598
        apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x])
        apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
599

comfyanonymous's avatar
comfyanonymous committed
600
        if self.model.get_dtype() == torch.float16:
comfyanonymous's avatar
comfyanonymous committed
601
602
603
604
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

comfyanonymous's avatar
comfyanonymous committed
605
606
607
608
609
610
        if self.model.is_adm():
            noise_augmentor = None
            if hasattr(self.model, 'noise_augmentor'): #unclip
                noise_augmentor = self.model.noise_augmentor
            positive = encode_adm(positive, noise.shape[0], self.device, noise_augmentor)
            negative = encode_adm(negative, noise.shape[0], self.device, noise_augmentor)
611

612
        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
comfyanonymous's avatar
comfyanonymous committed
613

comfyanonymous's avatar
comfyanonymous committed
614
        cond_concat = None
615
        if hasattr(self.model, 'concat_keys'): #inpaint
comfyanonymous's avatar
comfyanonymous committed
616
617
618
619
620
621
            cond_concat = []
            for ck in self.model.concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask[:,:1])
                    elif ck == "masked_image":
622
                        cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
comfyanonymous's avatar
comfyanonymous committed
623
624
625
626
627
628
629
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            extra_args["cond_concat"] = cond_concat

630
631
632
633
634
        if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
            max_denoise = False
        else:
            max_denoise = True

635
        with precision_scope(model_management.get_autocast_device(self.device)):
636
            if self.sampler == "uni_pc":
637
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
638
            elif self.sampler == "uni_pc_bh2":
639
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
640
641
642
643
644
645
646
            elif self.sampler == "ddim":
                timesteps = []
                for s in range(sigmas.shape[0]):
                    timesteps.insert(0, self.model_wrap.sigma_to_t(sigmas[s]))
                noise_mask = None
                if denoise_mask is not None:
                    noise_mask = 1.0 - denoise_mask
647
648
649

                ddim_callback = None
                if callback is not None:
650
651
                    total_steps = len(timesteps) - 1
                    ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
652

comfyanonymous's avatar
comfyanonymous committed
653
                sampler = DDIMSampler(self.model, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
654
655
656
657
658
659
660
661
662
663
664
665
                sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
                z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
                samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
                                                     conditioning=positive,
                                                     batch_size=noise.shape[0],
                                                     shape=noise.shape[1:],
                                                     verbose=False,
                                                     unconditional_guidance_scale=cfg,
                                                     unconditional_conditioning=negative,
                                                     eta=0.0,
                                                     x_T=z_enc,
                                                     x0=latent_image,
666
                                                     img_callback=ddim_callback,
comfyanonymous's avatar
comfyanonymous committed
667
                                                     denoise_function=sampling_function,
668
                                                     extra_args=extra_args,
comfyanonymous's avatar
comfyanonymous committed
669
670
                                                     mask=noise_mask,
                                                     to_zero=sigmas[-1]==0,
671
672
                                                     end_step=sigmas.shape[0] - 1,
                                                     disable_pbar=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
673

comfyanonymous's avatar
comfyanonymous committed
674
            else:
675
676
677
678
679
680
                extra_args["denoise_mask"] = denoise_mask
                self.model_k.latent_image = latent_image
                self.model_k.noise = noise

                noise = noise * sigmas[0]

681
                k_callback = None
682
                total_steps = len(sigmas) - 1
683
                if callback is not None:
684
                    k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
685

686
687
                if latent_image is not None:
                    noise += latent_image
688
                if self.sampler == "dpm_fast":
689
                    samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
690
                elif self.sampler == "dpm_adaptive":
691
                    samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
692
                else:
693
                    samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
694

comfyanonymous's avatar
comfyanonymous committed
695
        return samples.to(torch.float32)