samplers.py 14.7 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
5
import torch
import contextlib
6
import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
9
10
11
12
13

class CFGDenoiser(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, x, sigma, uncond, cond, cond_scale):
comfyanonymous's avatar
comfyanonymous committed
14
        if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18
19
20
21
22
23
            x_in = torch.cat([x] * 2)
            sigma_in = torch.cat([sigma] * 2)
            cond_in = torch.cat([uncond, cond])
            uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
        else:
            cond = self.inner_model(x, sigma, cond=cond)
            uncond = self.inner_model(x, sigma, cond=uncond)
        return uncond + (cond - uncond) * cond_scale

comfyanonymous's avatar
comfyanonymous committed
24
25
def sampling_function(model_function, x, sigma, uncond, cond, cond_scale, cond_concat=None):
        def get_area_and_mult(cond, x_in, cond_concat_in):
26
27
28
29
30
31
32
33
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            min_sigma = 0.0
            max_sigma = 999.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
            mult = torch.ones_like(input_x) * strength

            rr = 8
            if area[2] != 0:
                for t in range(rr):
                    mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1))
            if (area[0] + area[2]) < x_in.shape[2]:
                for t in range(rr):
                    mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1))
            if area[3] != 0:
                for t in range(rr):
                    mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1))
            if (area[1] + area[3]) < x_in.shape[3]:
                for t in range(rr):
                    mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1))
comfyanonymous's avatar
comfyanonymous committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
            return (input_x, mult, conditionning, area)

        def cond_equal_size(c1, c2):
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
                if c1['c_crossattn'].shape != c2['c_crossattn'].shape:
                    return False
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
            return True

        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
            for x in c_list:
                if 'c_crossattn' in x:
                    c_crossattn.append(x['c_crossattn'])
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
            out = {}
            if len(c_crossattn) > 0:
                out['c_crossattn'] = [torch.cat(c_crossattn)]
            if len(c_concat) > 0:
                out['c_concat'] = [torch.cat(c_concat)]
            return out

        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, sigma, max_total_area, cond_concat_in):
comfyanonymous's avatar
comfyanonymous committed
88
89
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
90
91
92
93
94
95

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
96

97
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
98
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
99
                p = get_area_and_mult(x, x_in, cond_concat_in)
100
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
101
                    continue
102
103
104

                to_run += [(p, COND)]
            for x in uncond:
comfyanonymous's avatar
comfyanonymous committed
105
                p = get_area_and_mult(x, x_in, cond_concat_in)
106
107
108
109
110
111
112
113
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
114
                to_batch_temp = []
115
116
                for x in range(len(to_run)):
                    if to_run[x][0][0].shape == first_shape:
comfyanonymous's avatar
comfyanonymous committed
117
                        if cond_equal_size(to_run[x][0][2], first[0][2]):
118
119
120
121
122
123
124
125
126
127
                            to_batch_temp += [x]

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
145
                c = cond_cat(c)
146
147
                sigma_ = torch.cat([sigma] * batch_chunks)

148
                output = model_function(input_x, sigma_, cond=c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
149
                del input_x
150
151
152
153
154
155
156
157

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
158
159
160
161
                del mult

            out_cond /= out_count
            del out_count
162
163
164
165
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
166
167


168
        max_total_area = model_management.maximum_batch_area()
comfyanonymous's avatar
comfyanonymous committed
169
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, sigma, max_total_area, cond_concat)
comfyanonymous's avatar
comfyanonymous committed
170
        return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
171

172
173
174
175
class CFGDenoiserComplex(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
comfyanonymous's avatar
comfyanonymous committed
176
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None):
177
178
179
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
            x = x * denoise_mask + (self.latent_image + self.noise * sigma) * latent_mask
comfyanonymous's avatar
comfyanonymous committed
180
        out = sampling_function(self.inner_model, x, sigma, uncond, cond, cond_scale, cond_concat)
181
182
183
184
185
186
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
187

comfyanonymous's avatar
comfyanonymous committed
188
189
190
191
192
193
194
195
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
196
197
198
199
200
201
202
203
204
205
206
def blank_inpaint_image_like(latent_image):
    blank_image = torch.ones_like(latent_image)
    # these are the values for "zero" in pixel space translated to latent space
    # the proper way to do this is to apply the mask to the image in pixel space and then send it through the VAE
    # unfortunately that gives zero flexibility so I did things like this instead which hopefully works
    blank_image[:,0] *= 0.8223
    blank_image[:,1] *= -0.6876
    blank_image[:,2] *= 0.6364
    blank_image[:,3] *= 0.1380
    return blank_image

comfyanonymous's avatar
comfyanonymous committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
236
237
238
239
240

class KSampler:
    SCHEDULERS = ["karras", "normal", "simple"]
    SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral",
                "sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde",
241
                "sample_dpmpp_2m", "uni_pc"]
comfyanonymous's avatar
comfyanonymous committed
242
243
244
245

    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None):
        self.model = model
        if self.model.parameterization == "v":
246
            self.model_wrap = k_diffusion_external.CompVisVDenoiser(self.model, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
247
        else:
248
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
249
        self.model_k = CFGDenoiserComplex(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
250
251
252
253
254
255
256
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
257
258
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
259
260
261
262
263
264
265
266
267
268
269
        self.set_steps(steps, denoise)

    def _calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['sample_dpm_2', 'sample_dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
270
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

    def set_steps(self, steps, denoise=None):
        self.steps = steps
        if denoise is None:
            self.sigmas = self._calculate_sigmas(steps)
        else:
            new_steps = int(steps/denoise)
            sigmas = self._calculate_sigmas(new_steps)
            self.sigmas = sigmas[-(steps + 1):]


292
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None):
comfyanonymous's avatar
comfyanonymous committed
293
294
295
        sigmas = self.sigmas
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
296
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
297
298
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
299
300
301
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
302
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
303
304
305
306
307
308
309
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
310

comfyanonymous's avatar
comfyanonymous committed
311
312
313
314
315
316
317
318
        positive = positive[:]
        negative = negative[:]
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

comfyanonymous's avatar
comfyanonymous committed
319
320
321
322
323
        if self.model.model.diffusion_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

324
        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg}
comfyanonymous's avatar
comfyanonymous committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

        if hasattr(self.model, 'concat_keys'):
            cond_concat = []
            for ck in self.model.concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask[:,:1])
                    elif ck == "masked_image":
                        blank_image = blank_inpaint_image_like(latent_image)
                        cond_concat.append(latent_image * (1.0 - denoise_mask) + denoise_mask * blank_image)
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            extra_args["cond_concat"] = cond_concat

comfyanonymous's avatar
comfyanonymous committed
342
        with precision_scope(self.device):
343
            if self.sampler == "uni_pc":
344
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, extra_args=extra_args, noise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
345
            else:
346
347
348
349
350
351
                extra_args["denoise_mask"] = denoise_mask
                self.model_k.latent_image = latent_image
                self.model_k.noise = noise

                noise = noise * sigmas[0]

352
353
354
                if latent_image is not None:
                    noise += latent_image
                if self.sampler == "sample_dpm_fast":
355
                    samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args)
356
                elif self.sampler == "sample_dpm_adaptive":
357
                    samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args)
358
                else:
359
360
                    samples = getattr(k_diffusion_sampling, self.sampler)(self.model_k, noise, sigmas, extra_args=extra_args)

comfyanonymous's avatar
comfyanonymous committed
361
        return samples.to(torch.float32)