Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
a2e18b15
Commit
a2e18b15
authored
Apr 30, 2023
by
BlenderNeko
Browse files
allow disabling of progress bar when sampling
parent
4cea9aec
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
6 deletions
+6
-6
comfy/samplers.py
comfy/samplers.py
+6
-6
No files found.
comfy/samplers.py
View file @
a2e18b15
...
@@ -541,7 +541,7 @@ class KSampler:
...
@@ -541,7 +541,7 @@ class KSampler:
sigmas
=
self
.
calculate_sigmas
(
new_steps
).
to
(
self
.
device
)
sigmas
=
self
.
calculate_sigmas
(
new_steps
).
to
(
self
.
device
)
self
.
sigmas
=
sigmas
[
-
(
steps
+
1
):]
self
.
sigmas
=
sigmas
[
-
(
steps
+
1
):]
def
sample
(
self
,
noise
,
positive
,
negative
,
cfg
,
latent_image
=
None
,
start_step
=
None
,
last_step
=
None
,
force_full_denoise
=
False
,
denoise_mask
=
None
,
sigmas
=
None
,
callback
=
None
):
def
sample
(
self
,
noise
,
positive
,
negative
,
cfg
,
latent_image
=
None
,
start_step
=
None
,
last_step
=
None
,
force_full_denoise
=
False
,
denoise_mask
=
None
,
sigmas
=
None
,
callback
=
None
,
disable_pbar
=
False
):
if
sigmas
is
None
:
if
sigmas
is
None
:
sigmas
=
self
.
sigmas
sigmas
=
self
.
sigmas
sigma_min
=
self
.
sigma_min
sigma_min
=
self
.
sigma_min
...
@@ -610,9 +610,9 @@ class KSampler:
...
@@ -610,9 +610,9 @@ class KSampler:
with
precision_scope
(
model_management
.
get_autocast_device
(
self
.
device
)):
with
precision_scope
(
model_management
.
get_autocast_device
(
self
.
device
)):
if
self
.
sampler
==
"uni_pc"
:
if
self
.
sampler
==
"uni_pc"
:
samples
=
uni_pc
.
sample_unipc
(
self
.
model_wrap
,
noise
,
latent_image
,
sigmas
,
sampling_function
=
sampling_function
,
max_denoise
=
max_denoise
,
extra_args
=
extra_args
,
noise_mask
=
denoise_mask
,
callback
=
callback
)
samples
=
uni_pc
.
sample_unipc
(
self
.
model_wrap
,
noise
,
latent_image
,
sigmas
,
sampling_function
=
sampling_function
,
max_denoise
=
max_denoise
,
extra_args
=
extra_args
,
noise_mask
=
denoise_mask
,
callback
=
callback
,
disable
=
disable_pbar
)
elif
self
.
sampler
==
"uni_pc_bh2"
:
elif
self
.
sampler
==
"uni_pc_bh2"
:
samples
=
uni_pc
.
sample_unipc
(
self
.
model_wrap
,
noise
,
latent_image
,
sigmas
,
sampling_function
=
sampling_function
,
max_denoise
=
max_denoise
,
extra_args
=
extra_args
,
noise_mask
=
denoise_mask
,
callback
=
callback
,
variant
=
'bh2'
)
samples
=
uni_pc
.
sample_unipc
(
self
.
model_wrap
,
noise
,
latent_image
,
sigmas
,
sampling_function
=
sampling_function
,
max_denoise
=
max_denoise
,
extra_args
=
extra_args
,
noise_mask
=
denoise_mask
,
callback
=
callback
,
variant
=
'bh2'
,
disable
=
disable_pbar
)
elif
self
.
sampler
==
"ddim"
:
elif
self
.
sampler
==
"ddim"
:
timesteps
=
[]
timesteps
=
[]
for
s
in
range
(
sigmas
.
shape
[
0
]):
for
s
in
range
(
sigmas
.
shape
[
0
]):
...
@@ -659,10 +659,10 @@ class KSampler:
...
@@ -659,10 +659,10 @@ class KSampler:
if
latent_image
is
not
None
:
if
latent_image
is
not
None
:
noise
+=
latent_image
noise
+=
latent_image
if
self
.
sampler
==
"dpm_fast"
:
if
self
.
sampler
==
"dpm_fast"
:
samples
=
k_diffusion_sampling
.
sample_dpm_fast
(
self
.
model_k
,
noise
,
sigma_min
,
sigmas
[
0
],
self
.
steps
,
extra_args
=
extra_args
,
callback
=
k_callback
)
samples
=
k_diffusion_sampling
.
sample_dpm_fast
(
self
.
model_k
,
noise
,
sigma_min
,
sigmas
[
0
],
self
.
steps
,
extra_args
=
extra_args
,
callback
=
k_callback
,
disable
=
disable_pbar
)
elif
self
.
sampler
==
"dpm_adaptive"
:
elif
self
.
sampler
==
"dpm_adaptive"
:
samples
=
k_diffusion_sampling
.
sample_dpm_adaptive
(
self
.
model_k
,
noise
,
sigma_min
,
sigmas
[
0
],
extra_args
=
extra_args
,
callback
=
k_callback
)
samples
=
k_diffusion_sampling
.
sample_dpm_adaptive
(
self
.
model_k
,
noise
,
sigma_min
,
sigmas
[
0
],
extra_args
=
extra_args
,
callback
=
k_callback
,
disable
=
disable_pbar
)
else
:
else
:
samples
=
getattr
(
k_diffusion_sampling
,
"sample_{}"
.
format
(
self
.
sampler
))(
self
.
model_k
,
noise
,
sigmas
,
extra_args
=
extra_args
,
callback
=
k_callback
)
samples
=
getattr
(
k_diffusion_sampling
,
"sample_{}"
.
format
(
self
.
sampler
))(
self
.
model_k
,
noise
,
sigmas
,
extra_args
=
extra_args
,
callback
=
k_callback
,
disable
=
disable_pbar
)
return
samples
.
to
(
torch
.
float32
)
return
samples
.
to
(
torch
.
float32
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment