samplers.py 28 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
5
import torch
import contextlib
6
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
import math

def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
    return abs(a*b) // math.gcd(a, b)
comfyanonymous's avatar
comfyanonymous committed
13

comfyanonymous's avatar
comfyanonymous committed
14
15
#The main sampling function shared by all the samplers
#Returns predicted noise
16
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
17
        def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
18
19
20
21
22
23
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
24

25
            adm_cond = None
26
27
            if 'adm_encoded' in cond[1]:
                adm_cond = cond[1]['adm_encoded']
28

29
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
Jacob Segal's avatar
Jacob Segal committed
30
31
32
            if 'mask' in cond[1]:
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
33
34
35
                mask_strength = 1.0
                if "mask_strength" in cond[1]:
                    mask_strength = cond[1]["mask_strength"]
Jacob Segal's avatar
Jacob Segal committed
36
37
38
                mask = cond[1]['mask']
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
39
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
40
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

            if 'mask' not in cond[1]:
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
65
66
67
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
comfyanonymous's avatar
comfyanonymous committed
68

69
70
71
            if adm_cond is not None:
                conditionning['c_adm'] = adm_cond

comfyanonymous's avatar
comfyanonymous committed
72
73
74
            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

            patches = None
            if 'gligen' in cond[1]:
                gligen = cond[1]['gligen']
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
                    gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
                else:
                    gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
90
91

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
92
93
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
94
95
96
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
101
102
103
104
105
106
                s1 = c1['c_crossattn'].shape
                s2 = c2['c_crossattn'].shape
                if s1 != s2:
                    if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
                        return False

                    mult_min = lcm(s1[1], s2[1])
                    diff = mult_min // min(s1[1], s2[1])
                    if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
                        return False
comfyanonymous's avatar
comfyanonymous committed
107
108
109
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
110
111
112
            if 'c_adm' in c1:
                if c1['c_adm'].shape != c2['c_adm'].shape:
                    return False
comfyanonymous's avatar
comfyanonymous committed
113
114
            return True

comfyanonymous's avatar
comfyanonymous committed
115
116
117
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
118
119

            #control
comfyanonymous's avatar
comfyanonymous committed
120
121
122
123
124
125
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

126
127
128
129
130
131
132
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
133
134
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
135
136
137
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
138
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
139
            crossattn_max_len = 0
comfyanonymous's avatar
comfyanonymous committed
140
141
            for x in c_list:
                if 'c_crossattn' in x:
comfyanonymous's avatar
comfyanonymous committed
142
143
144
145
146
147
                    c = x['c_crossattn']
                    if crossattn_max_len == 0:
                        crossattn_max_len = c.shape[1]
                    else:
                        crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
                    c_crossattn.append(c)
comfyanonymous's avatar
comfyanonymous committed
148
149
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
150
151
                if 'c_adm' in x:
                    c_adm.append(x['c_adm'])
comfyanonymous's avatar
comfyanonymous committed
152
            out = {}
comfyanonymous's avatar
comfyanonymous committed
153
154
155
156
157
158
159
160
            c_crossattn_out = []
            for c in c_crossattn:
                if c.shape[1] < crossattn_max_len:
                    c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
                c_crossattn_out.append(c)

            if len(c_crossattn_out) > 0:
                out['c_crossattn'] = [torch.cat(c_crossattn_out)]
comfyanonymous's avatar
comfyanonymous committed
161
162
            if len(c_concat) > 0:
                out['c_concat'] = [torch.cat(c_concat)]
163
164
            if len(c_adm) > 0:
                out['c_adm'] = torch.cat(c_adm)
comfyanonymous's avatar
comfyanonymous committed
165
166
            return out

167
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
comfyanonymous's avatar
comfyanonymous committed
168
169
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
170
171
172
173
174
175

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
176

177
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
178
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
179
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
180
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
181
                    continue
182
183
184

                to_run += [(p, COND)]
            for x in uncond:
comfyanonymous's avatar
comfyanonymous committed
185
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
186
187
188
189
190
191
192
193
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
194
                to_batch_temp = []
195
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
196
197
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
198
199
200
201
202
203
204
205
206

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
207
208
209
210
211
212

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
213
                control = None
214
                patches = None
215
216
217
218
219
220
221
222
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
223
                    control = p[4]
224
                    patches = p[5]
225
226
227

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
228
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
229
                timestep_ = torch.cat([timestep] * batch_chunks)
230

comfyanonymous's avatar
comfyanonymous committed
231
                if control is not None:
232
                    c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
233

234
                transformer_options = {}
235
                if 'transformer_options' in model_options:
236
237
238
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
239
240
241
242
243
244
245
246
247
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
248
249

                c['transformer_options'] = transformer_options
250

comfyanonymous's avatar
comfyanonymous committed
251
                output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
252
                del input_x
253

254
255
                model_management.throw_exception_if_processing_interrupted()

256
257
258
259
260
261
262
                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
                del mult

            out_cond /= out_count
            del out_count
267
268
269
270
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
271
272


273
        max_total_area = model_management.maximum_batch_area()
274
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
275
276
277
278
        if "sampler_cfg_function" in model_options:
            return model_options["sampler_cfg_function"](cond, uncond, cond_scale)
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
279

comfyanonymous's avatar
comfyanonymous committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
294
295
    def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options)
comfyanonymous's avatar
comfyanonymous committed
296
297
298
299
        return out


class KSamplerX0Inpaint(torch.nn.Module):
300
301
302
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
303
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}):
304
305
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
306
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
307
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options)
308
309
310
311
312
313
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
314

comfyanonymous's avatar
comfyanonymous committed
315
316
317
318
319
320
321
322
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
323
324
325
326
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
327
328
329
330
        ts = ddim_timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
comfyanonymous's avatar
comfyanonymous committed
331
332
333
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
334
335
336
337
338
339
340
341
342
def blank_inpaint_image_like(latent_image):
    blank_image = torch.ones_like(latent_image)
    # these are the values for "zero" in pixel space translated to latent space
    blank_image[:,0] *= 0.8223
    blank_image[:,1] *= -0.6876
    blank_image[:,2] *= 0.6364
    blank_image[:,3] *= 0.1380
    return blank_image

Jacob Segal's avatar
Jacob Segal committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

Jacob Segal's avatar
Jacob Segal committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def resolve_cond_masks(conditions, h, w, device):
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
        if 'mask' in c[1]:
            mask = c[1]['mask']
            mask = mask.to(device=device)
            modified = c[1].copy()
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
            if mask.shape[2] != h or mask.shape[3] != w:
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
380
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
381
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
382
383
384
385
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
386
                else:
Jacob Segal's avatar
Jacob Segal committed
387
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
388
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
389
390
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
391
392
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
393
394
395
396

            modified['mask'] = mask
            conditions[i] = [c[0], modified]

comfyanonymous's avatar
comfyanonymous committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
426

427
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
428
429
430
431
432
433
434
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
435
436
            if name in x[1] and x[1][name] is not None:
                cond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
437
438
439
440
441
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
442
443
            if name in x[1] and x[1][name] is not None:
                uncond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
444
445
446
447
448
449
450
451
452
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
453
        if name in o[1] and o[1][name] is not None:
comfyanonymous's avatar
comfyanonymous committed
454
            n = o[1].copy()
455
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
456
457
458
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
459
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
460
461
            uncond[temp[1]] = [o[0], n]

462

463
def encode_adm(model, conds, batch_size, device):
464
465
    for t in range(len(conds)):
        x = conds[t]
comfyanonymous's avatar
comfyanonymous committed
466
        adm_out = None
467
468
        if 'adm' in x[1]:
            adm_out = x[1]["adm"]
469
        else:
470
471
            params = x[1].copy()
            adm_out = model.encode_adm(device=device, **params)
comfyanonymous's avatar
comfyanonymous committed
472
473
        if adm_out is not None:
            x[1] = x[1].copy()
474
            x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size).to(device)
475
476
477

    return conds

478

comfyanonymous's avatar
comfyanonymous committed
479
class KSampler:
480
    SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
481
482
    SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
                "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde",
483
                "dpmpp_2m", "dpmpp_2m_sde", "ddim", "uni_pc", "uni_pc_bh2"]
comfyanonymous's avatar
comfyanonymous committed
484

485
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
486
        self.model = model
comfyanonymous's avatar
comfyanonymous committed
487
        self.model_denoise = CFGNoisePredictor(self.model)
comfyanonymous's avatar
comfyanonymous committed
488
        if self.model.parameterization == "v":
comfyanonymous's avatar
comfyanonymous committed
489
            self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
490
        else:
comfyanonymous's avatar
comfyanonymous committed
491
492
493
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
        self.model_wrap.parameterization = self.model.parameterization
        self.model_k = KSamplerX0Inpaint(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
494
495
496
497
498
499
500
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
501
502
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
503
        self.set_steps(steps, denoise)
504
        self.denoise = denoise
505
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
506

comfyanonymous's avatar
comfyanonymous committed
507
508
509
510
511
512
513
514
515
516
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
517
518
        elif self.scheduler == "exponential":
            sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
519
520
521
522
523
524
525
526
527
528
529
530
531
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps)
        elif self.scheduler == "ddim_uniform":
            sigmas = ddim_scheduler(self.model_wrap, steps)
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
532
533
    def set_steps(self, steps, denoise=None):
        self.steps = steps
534
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
535
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
536
537
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
538
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
539
540
            self.sigmas = sigmas[-(steps + 1):]

541
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False):
542
543
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
544
545
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
546
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
547
548
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
549
550
551
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
552
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
553
554
555
556
557
558
559
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
560

comfyanonymous's avatar
comfyanonymous committed
561
562
        positive = positive[:]
        negative = negative[:]
Jacob Segal's avatar
Jacob Segal committed
563
564
565
566

        resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
        resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)

comfyanonymous's avatar
comfyanonymous committed
567
568
569
570
571
572
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

573
574
        apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x])
        apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
575

comfyanonymous's avatar
comfyanonymous committed
576
        if self.model.get_dtype() == torch.float16:
comfyanonymous's avatar
comfyanonymous committed
577
578
579
580
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

comfyanonymous's avatar
comfyanonymous committed
581
        if self.model.is_adm():
582
583
            positive = encode_adm(self.model, positive, noise.shape[0], self.device)
            negative = encode_adm(self.model, negative, noise.shape[0], self.device)
584

585
        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
comfyanonymous's avatar
comfyanonymous committed
586

comfyanonymous's avatar
comfyanonymous committed
587
        cond_concat = None
588
        if hasattr(self.model, 'concat_keys'): #inpaint
comfyanonymous's avatar
comfyanonymous committed
589
590
591
592
593
594
            cond_concat = []
            for ck in self.model.concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask[:,:1])
                    elif ck == "masked_image":
595
                        cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
comfyanonymous's avatar
comfyanonymous committed
596
597
598
599
600
601
602
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            extra_args["cond_concat"] = cond_concat

603
604
605
606
607
        if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
            max_denoise = False
        else:
            max_denoise = True

608
        with precision_scope(model_management.get_autocast_device(self.device)):
609
            if self.sampler == "uni_pc":
610
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
611
            elif self.sampler == "uni_pc_bh2":
612
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
613
614
615
616
617
618
619
            elif self.sampler == "ddim":
                timesteps = []
                for s in range(sigmas.shape[0]):
                    timesteps.insert(0, self.model_wrap.sigma_to_t(sigmas[s]))
                noise_mask = None
                if denoise_mask is not None:
                    noise_mask = 1.0 - denoise_mask
620
621
622

                ddim_callback = None
                if callback is not None:
623
624
                    total_steps = len(timesteps) - 1
                    ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
625

comfyanonymous's avatar
comfyanonymous committed
626
                sampler = DDIMSampler(self.model, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
627
628
629
630
631
632
633
634
635
636
637
638
                sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
                z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
                samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
                                                     conditioning=positive,
                                                     batch_size=noise.shape[0],
                                                     shape=noise.shape[1:],
                                                     verbose=False,
                                                     unconditional_guidance_scale=cfg,
                                                     unconditional_conditioning=negative,
                                                     eta=0.0,
                                                     x_T=z_enc,
                                                     x0=latent_image,
639
                                                     img_callback=ddim_callback,
comfyanonymous's avatar
comfyanonymous committed
640
                                                     denoise_function=sampling_function,
641
                                                     extra_args=extra_args,
comfyanonymous's avatar
comfyanonymous committed
642
643
                                                     mask=noise_mask,
                                                     to_zero=sigmas[-1]==0,
644
645
                                                     end_step=sigmas.shape[0] - 1,
                                                     disable_pbar=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
646

comfyanonymous's avatar
comfyanonymous committed
647
            else:
648
649
650
651
652
653
                extra_args["denoise_mask"] = denoise_mask
                self.model_k.latent_image = latent_image
                self.model_k.noise = noise

                noise = noise * sigmas[0]

654
                k_callback = None
655
                total_steps = len(sigmas) - 1
656
                if callback is not None:
657
                    k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
658

659
660
                if latent_image is not None:
                    noise += latent_image
661
                if self.sampler == "dpm_fast":
662
                    samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
663
                elif self.sampler == "dpm_adaptive":
664
                    samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
665
                else:
666
                    samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
667

comfyanonymous's avatar
comfyanonymous committed
668
        return samples.to(torch.float32)