attention.py 30.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
comfyanonymous's avatar
comfyanonymous committed
6
from typing import Optional
7
import logging
comfyanonymous's avatar
comfyanonymous committed
8

comfyanonymous's avatar
comfyanonymous committed
9
from .diffusionmodules.util import AlphaBlender, timestep_embedding
comfyanonymous's avatar
comfyanonymous committed
10
11
from .sub_quadratic_attention import efficient_dot_product_attention

12
from comfy import model_management
13

14
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
15
16
17
    import xformers
    import xformers.ops

comfyanonymous's avatar
comfyanonymous committed
18
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
19
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
20
ops = comfy.ops.disable_weight_init
comfyanonymous's avatar
comfyanonymous committed
21

22
FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype()
23
24
25
26

def get_attn_precision(attn_precision):
    if args.dont_upcast_attention:
        return None
27
28
    if FORCE_UPCAST_ATTENTION_DTYPE is not None:
        return FORCE_UPCAST_ATTENTION_DTYPE
29
30
    return attn_precision

comfyanonymous's avatar
comfyanonymous committed
31
32
33
34
35
36
37
38
39
40
41
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
42
    return d
comfyanonymous's avatar
comfyanonymous committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
58
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
59
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
60
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
61
62
63
64
65
66
67

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
68
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
73
            operations.Linear(dim, inner_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
74
            nn.GELU()
comfyanonymous's avatar
comfyanonymous committed
75
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
76
77
78
79

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
comfyanonymous's avatar
comfyanonymous committed
80
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
81
82
83
84
85
        )

    def forward(self, x):
        return self.net(x)

86
87
def Normalize(in_channels, dtype=None, device=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
88

89
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
90
91
    attn_precision = get_attn_precision(attn_precision)

92
93
94
95
96
97
    if skip_reshape:
        b, _, _, dim_head = q.shape
    else:
        b, _, dim_head = q.shape
        dim_head //= heads

98
99
    scale = dim_head ** -0.5

100
    h = heads
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    if skip_reshape:
         q, k, v = map(
            lambda t: t.reshape(b * heads, -1, dim_head),
            (q, k, v),
        )
    else:
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, -1, heads, dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * heads, -1, dim_head)
            .contiguous(),
            (q, k, v),
        )
115
116

    # force cast to fp32 to avoid overflowing
117
    if attn_precision == torch.float32:
comfyanonymous's avatar
comfyanonymous committed
118
        sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
119
120
    else:
        sim = einsum('b i d, b j d -> b i j', q, k) * scale
comfyanonymous's avatar
comfyanonymous committed
121

122
    del q, k
comfyanonymous's avatar
comfyanonymous committed
123

124
    if exists(mask):
125
126
127
128
129
130
        if mask.dtype == torch.bool:
            mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)
        else:
131
132
133
134
            if len(mask.shape) == 2:
                bs = 1
            else:
                bs = mask.shape[0]
135
            mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
136
            sim.add_(mask)
comfyanonymous's avatar
comfyanonymous committed
137

138
139
    # attention, what we cannot get enough of
    sim = sim.softmax(dim=-1)
comfyanonymous's avatar
comfyanonymous committed
140

141
    out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
142
143
144
145
146
147
    out = (
        out.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
148
    return out
comfyanonymous's avatar
comfyanonymous committed
149
150


151
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False):
152
153
    attn_precision = get_attn_precision(attn_precision)

154
155
156
157
158
    if skip_reshape:
        b, _, _, dim_head = query.shape
    else:
        b, _, dim_head = query.shape
        dim_head //= heads
159
160
161

    scale = dim_head ** -0.5

162
163
164
165
166
167
168
169
170
    if skip_reshape:
        query = query.reshape(b * heads, -1, dim_head)
        value = value.reshape(b * heads, -1, dim_head)
        key = key.reshape(b * heads, -1, dim_head).movedim(1, 2)
    else:
        query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
        value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
        key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)

comfyanonymous's avatar
comfyanonymous committed
171

172
    dtype = query.dtype
173
    upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32
174
175
176
177
178
    if upcast_attention:
        bytes_per_token = torch.finfo(torch.float32).bits//8
    else:
        bytes_per_token = torch.finfo(query.dtype).bits//8
    batch_x_heads, q_tokens, _ = query.shape
179
    _, _, k_tokens = key.shape
180
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
comfyanonymous's avatar
comfyanonymous committed
181

182
    mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
comfyanonymous's avatar
comfyanonymous committed
183

184
    kv_chunk_size_min = None
185
186
187
188
189
190
191
192
193
194
195
196
    kv_chunk_size = None
    query_chunk_size = None

    for x in [4096, 2048, 1024, 512, 256]:
        count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
        if count >= k_tokens:
            kv_chunk_size = k_tokens
            query_chunk_size = x
            break

    if query_chunk_size is None:
        query_chunk_size = 512
197

198
    if mask is not None:
199
200
201
202
        if len(mask.shape) == 2:
            bs = 1
        else:
            bs = mask.shape[0]
203
        mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
204

205
206
    hidden_states = efficient_dot_product_attention(
        query,
207
        key,
208
209
210
211
212
213
        value,
        query_chunk_size=query_chunk_size,
        kv_chunk_size=kv_chunk_size,
        kv_chunk_size_min=kv_chunk_size_min,
        use_checkpoint=False,
        upcast_attention=upcast_attention,
214
        mask=mask,
215
216
217
218
219
220
221
    )

    hidden_states = hidden_states.to(dtype)

    hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
    return hidden_states

222
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
223
224
    attn_precision = get_attn_precision(attn_precision)

225
226
227
228
229
230
    if skip_reshape:
        b, _, _, dim_head = q.shape
    else:
        b, _, dim_head = q.shape
        dim_head //= heads

231
232
    scale = dim_head ** -0.5

233
    h = heads
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    if skip_reshape:
         q, k, v = map(
            lambda t: t.reshape(b * heads, -1, dim_head),
            (q, k, v),
        )
    else:
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, -1, heads, dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * heads, -1, dim_head)
            .contiguous(),
            (q, k, v),
        )
248
249
250
251
252

    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

    mem_free_total = model_management.get_free_memory(q.device)

253
    if attn_precision == torch.float32:
254
        element_size = 4
255
        upcast = True
256
257
    else:
        element_size = q.element_size()
258
        upcast = False
259

260
    gb = 1024 ** 3
261
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
262
    modifier = 3
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    mem_required = tensor_size * modifier
    steps = 1


    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
        #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

    if steps > 64:
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                            f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

277
    if mask is not None:
278
279
280
281
        if len(mask.shape) == 2:
            bs = 1
        else:
            bs = mask.shape[0]
282
        mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
283

284
285
286
287
288
289
290
291
    # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
    first_op_done = False
    cleared_cache = False
    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
292
                if upcast:
293
294
                    with torch.autocast(enabled=False, device_type = 'cuda'):
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
comfyanonymous's avatar
comfyanonymous committed
295
                else:
296
297
                    s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale

298
299
300
301
302
303
                if mask is not None:
                    if len(mask.shape) == 2:
                        s1 += mask[i:end]
                    else:
                        s1 += mask[:, i:end]

304
305
                s2 = s1.softmax(dim=-1).to(v.dtype)
                del s1
306
                first_op_done = True
307
308
309
310
311
312
313
314
315

                r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
            if first_op_done == False:
                model_management.soft_empty_cache(True)
                if cleared_cache == False:
                    cleared_cache = True
316
                    logging.warning("out of memory error, emptying cache and trying again")
317
318
319
                    continue
                steps *= 2
                if steps > 64:
comfyanonymous's avatar
comfyanonymous committed
320
                    raise e
321
                logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
322
323
324
325
326
            else:
                raise e

    del q, k, v

327
328
329
330
331
332
333
    r1 = (
        r1.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return r1
334

335
336
337
BROKEN_XFORMERS = False
try:
    x_vers = xformers.__version__
comfyanonymous's avatar
comfyanonymous committed
338
339
    # XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error)
    BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
340
341
342
except:
    pass

343
344
345
346
347
348
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
    if skip_reshape:
        b, _, _, dim_head = q.shape
    else:
        b, _, dim_head = q.shape
        dim_head //= heads
349
350
351

    disabled_xformers = False

352
353
    if BROKEN_XFORMERS:
        if b * heads > 65535:
354
355
356
357
358
359
360
361
            disabled_xformers = True

    if not disabled_xformers:
        if torch.jit.is_tracing() or torch.jit.is_scripting():
            disabled_xformers = True

    if disabled_xformers:
        return attention_pytorch(q, k, v, heads, mask)
362

363
364
365
366
367
368
369
370
371
372
    if skip_reshape:
         q, k, v = map(
            lambda t: t.reshape(b * heads, -1, dim_head),
            (q, k, v),
        )
    else:
        q, k, v = map(
            lambda t: t.reshape(b, -1, heads, dim_head),
            (q, k, v),
        )
373

374
375
376
377
378
379
380
    if mask is not None:
        pad = 8 - q.shape[1] % 8
        mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
        mask_out[:, :, :mask.shape[-1]] = mask
        mask = mask_out[:, :, :mask.shape[-1]]

    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
381

382
383
384
385
386
387
388
389
390
391
392
393
    if skip_reshape:
        out = (
            out.unsqueeze(0)
            .reshape(b, heads, -1, dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b, -1, heads * dim_head)
        )
    else:
        out = (
            out.reshape(b, -1, heads * dim_head)
        )

394
395
    return out

396
397
398
399
400
401
402
403
404
405
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
    if skip_reshape:
        b, _, _, dim_head = q.shape
    else:
        b, _, dim_head = q.shape
        dim_head //= heads
        q, k, v = map(
            lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
            (q, k, v),
        )
406

407
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
408
409
410
411
412
    out = (
        out.transpose(1, 2).reshape(b, -1, heads * dim_head)
    )
    return out

413

414
optimized_attention = attention_basic
comfyanonymous's avatar
comfyanonymous committed
415

416
if model_management.xformers_enabled():
417
    logging.info("Using xformers cross attention")
418
419
    optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
420
    logging.info("Using pytorch cross attention")
421
422
423
    optimized_attention = attention_pytorch
else:
    if args.use_split_cross_attention:
424
        logging.info("Using split optimization for cross attention")
425
426
        optimized_attention = attention_split
    else:
427
        logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
428
        optimized_attention = attention_sub_quad
comfyanonymous's avatar
comfyanonymous committed
429

430
431
432
optimized_attention_masked = optimized_attention

def optimized_attention_for_device(device, mask=False, small_input=False):
433
434
435
436
437
    if small_input:
        if model_management.pytorch_attention_enabled():
            return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
        else:
            return attention_basic
438
439
440

    if device == torch.device("cpu"):
        return attention_sub_quad
441

442
443
444
445
446
447
    if mask:
        return optimized_attention_masked

    return optimized_attention


448
class CrossAttention(nn.Module):
449
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=ops):
450
451
452
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)
453
        self.attn_precision = attn_precision
454
455
456
457

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
458
459
460
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
461

comfyanonymous's avatar
comfyanonymous committed
462
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
463

464
    def forward(self, x, context=None, value=None, mask=None):
465
466
467
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
468
469
470
471
472
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
473

474
        if mask is None:
475
            out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
476
        else:
477
            out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
478
479
        return self.to_out(out)

480

comfyanonymous's avatar
comfyanonymous committed
481
class BasicTransformerBlock(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
482
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
483
                 disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, attn_precision=None, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
484
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
485
486
487
488
489
490

        self.ff_in = ff_in or inner_dim is not None
        if inner_dim is None:
            inner_dim = dim

        self.is_res = inner_dim == dim
comfyanonymous's avatar
comfyanonymous committed
491
        self.attn_precision = attn_precision
comfyanonymous's avatar
comfyanonymous committed
492
493

        if self.ff_in:
comfyanonymous's avatar
comfyanonymous committed
494
            self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
495
496
            self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

comfyanonymous's avatar
comfyanonymous committed
497
        self.disable_self_attn = disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
498
        self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
499
                              context_dim=context_dim if self.disable_self_attn else None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
500
501
502
503
504
505
506
507
508
509
510
511
512
        self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

        if disable_temporal_crossattention:
            if switch_temporal_ca_to_sa:
                raise ValueError
            else:
                self.attn2 = None
        else:
            context_dim_attn2 = None
            if not switch_temporal_ca_to_sa:
                context_dim_attn2 = context_dim

            self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
comfyanonymous's avatar
comfyanonymous committed
513
                                heads=n_heads, dim_head=d_head, dropout=dropout, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
514
            self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
515

516
517
        self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
        self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
518
519
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
520
        self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
comfyanonymous's avatar
comfyanonymous committed
521

522
    def forward(self, x, context=None, transformer_options={}):
523
        extra_options = {}
524
525
        block = transformer_options.get("block", None)
        block_index = transformer_options.get("block_index", 0)
526
527
528
529
530
531
532
533
534
535
        transformer_patches = {}
        transformer_patches_replace = {}

        for k in transformer_options:
            if k == "patches":
                transformer_patches = transformer_options[k]
            elif k == "patches_replace":
                transformer_patches_replace = transformer_options[k]
            else:
                extra_options[k] = transformer_options[k]
536

537
538
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head
comfyanonymous's avatar
comfyanonymous committed
539
        extra_options["attn_precision"] = self.attn_precision
540

comfyanonymous's avatar
comfyanonymous committed
541
542
543
544
545
546
        if self.ff_in:
            x_skip = x
            x = self.ff_in(self.norm_in(x))
            if self.is_res:
                x += x_skip

547
        n = self.norm1(x)
548
549
550
551
552
553
554
555
556
557
558
559
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
560
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
561

comfyanonymous's avatar
comfyanonymous committed
562
563
564
565
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
580
        else:
581
            n = self.attn1(n, context=context_attn1, value=value_attn1)
582

583
584
585
586
587
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

588
        x += n
589
590
591
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
592
                x = p(x, extra_options)
593

comfyanonymous's avatar
comfyanonymous committed
594
595
596
597
598
599
600
601
602
        if self.attn2 is not None:
            n = self.norm2(x)
            if self.switch_temporal_ca_to_sa:
                context_attn2 = n
            else:
                context_attn2 = context
            value_attn2 = None
            if "attn2_patch" in transformer_patches:
                patch = transformer_patches["attn2_patch"]
603
                value_attn2 = context_attn2
comfyanonymous's avatar
comfyanonymous committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
                for p in patch:
                    n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)

            attn2_replace_patch = transformer_patches_replace.get("attn2", {})
            block_attn2 = transformer_block
            if block_attn2 not in attn2_replace_patch:
                block_attn2 = block

            if block_attn2 in attn2_replace_patch:
                if value_attn2 is None:
                    value_attn2 = context_attn2
                n = self.attn2.to_q(n)
                context_attn2 = self.attn2.to_k(context_attn2)
                value_attn2 = self.attn2.to_v(value_attn2)
                n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
                n = self.attn2.to_out(n)
            else:
                n = self.attn2(n, context=context_attn2, value=value_attn2)
622

623
624
625
626
627
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

628
        x += n
comfyanonymous's avatar
comfyanonymous committed
629
630
631
632
633
634
        if self.is_res:
            x_skip = x
        x = self.ff(self.norm3(x))
        if self.is_res:
            x += x_skip

comfyanonymous's avatar
comfyanonymous committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
650
                 use_checkpoint=True, attn_precision=None, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
651
652
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
653
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
654
655
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
656
        self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
657
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
658
            self.proj_in = operations.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
659
660
661
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
662
                                     padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
663
        else:
comfyanonymous's avatar
comfyanonymous committed
664
            self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
665
666
667

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
668
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
669
670
671
                for d in range(depth)]
        )
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
672
            self.proj_out = operations.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
673
674
                                                  kernel_size=1,
                                                  stride=1,
675
                                                  padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
676
        else:
comfyanonymous's avatar
comfyanonymous committed
677
            self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
678
679
        self.use_linear = use_linear

680
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
681
682
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
683
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
684
685
686
687
688
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
comfyanonymous's avatar
comfyanonymous committed
689
        x = x.movedim(1, 3).flatten(1, 2).contiguous()
comfyanonymous's avatar
comfyanonymous committed
690
691
692
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
693
            transformer_options["block_index"] = i
694
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
695
696
        if self.use_linear:
            x = self.proj_out(x)
comfyanonymous's avatar
comfyanonymous committed
697
        x = x.reshape(x.shape[0], h, w, x.shape[-1]).movedim(3, 1).contiguous()
comfyanonymous's avatar
comfyanonymous committed
698
699
700
701
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in

comfyanonymous's avatar
comfyanonymous committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

class SpatialVideoTransformer(SpatialTransformer):
    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        use_linear=False,
        context_dim=None,
        use_spatial_context=False,
        timesteps=None,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        time_context_dim=None,
        ff_in=False,
        checkpoint=False,
        time_depth=1,
        disable_self_attn=False,
        disable_temporal_crossattention=False,
        max_time_embed_period: int = 10000,
724
        attn_precision=None,
comfyanonymous's avatar
comfyanonymous committed
725
        dtype=None, device=None, operations=ops
comfyanonymous's avatar
comfyanonymous committed
726
727
728
729
730
731
732
733
734
735
736
    ):
        super().__init__(
            in_channels,
            n_heads,
            d_head,
            depth=depth,
            dropout=dropout,
            use_checkpoint=checkpoint,
            context_dim=context_dim,
            use_linear=use_linear,
            disable_self_attn=disable_self_attn,
737
            attn_precision=attn_precision,
comfyanonymous's avatar
comfyanonymous committed
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
            dtype=dtype, device=device, operations=operations
        )
        self.time_depth = time_depth
        self.depth = depth
        self.max_time_embed_period = max_time_embed_period

        time_mix_d_head = d_head
        n_time_mix_heads = n_heads

        time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)

        inner_dim = n_heads * d_head
        if use_spatial_context:
            time_context_dim = context_dim

        self.time_stack = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    n_time_mix_heads,
                    time_mix_d_head,
                    dropout=dropout,
                    context_dim=time_context_dim,
                    # timesteps=timesteps,
                    checkpoint=checkpoint,
                    ff_in=ff_in,
                    inner_dim=time_mix_inner_dim,
                    disable_self_attn=disable_self_attn,
                    disable_temporal_crossattention=disable_temporal_crossattention,
767
                    attn_precision=attn_precision,
comfyanonymous's avatar
comfyanonymous committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
                    dtype=dtype, device=device, operations=operations
                )
                for _ in range(self.depth)
            ]
        )

        assert len(self.time_stack) == len(self.transformer_blocks)

        self.use_spatial_context = use_spatial_context
        self.in_channels = in_channels

        time_embed_dim = self.in_channels * 4
        self.time_pos_embed = nn.Sequential(
            operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
        )

        self.time_mixer = AlphaBlender(
            alpha=merge_factor, merge_strategy=merge_strategy
        )

    def forward(
        self,
        x: torch.Tensor,
        context: Optional[torch.Tensor] = None,
        time_context: Optional[torch.Tensor] = None,
        timesteps: Optional[int] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
        transformer_options={}
    ) -> torch.Tensor:
        _, _, h, w = x.shape
        x_in = x
        spatial_context = None
        if exists(context):
            spatial_context = context

        if self.use_spatial_context:
            assert (
                context.ndim == 3
            ), f"n dims of spatial context should be 3 but are {context.ndim}"

            if time_context is None:
                time_context = context
            time_context_first_timestep = time_context[::timesteps]
            time_context = repeat(
                time_context_first_timestep, "b ... -> (b n) ...", n=h * w
            )
        elif time_context is not None and not self.use_spatial_context:
            time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
            if time_context.ndim == 2:
                time_context = rearrange(time_context, "b c -> b 1 c")

        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        if self.use_linear:
            x = self.proj_in(x)

        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
        emb = self.time_pos_embed(t_emb)
        emb = emb[:, None, :]

        for it_, (block, mix_block) in enumerate(
            zip(self.transformer_blocks, self.time_stack)
        ):
            transformer_options["block_index"] = it_
            x = block(
                x,
                context=spatial_context,
                transformer_options=transformer_options,
            )

            x_mix = x
            x_mix = x_mix + emb

            B, S, C = x_mix.shape
            x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
            x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
            x_mix = rearrange(
                x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
            )

            x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)

        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        if not self.use_linear:
            x = self.proj_out(x)
        out = x + x_in
        return out