attention.py 20.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any

comfyanonymous's avatar
comfyanonymous committed
9
from .diffusionmodules.util import checkpoint
comfyanonymous's avatar
comfyanonymous committed
10
11
from .sub_quadratic_attention import efficient_dot_product_attention

12
from comfy import model_management
13

14
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
15
16
17
    import xformers
    import xformers.ops

comfyanonymous's avatar
comfyanonymous committed
18
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.ops

comfyanonymous's avatar
comfyanonymous committed
21
# CrossAttn precision handling
comfyanonymous's avatar
comfyanonymous committed
22
23
24
25
26
if args.dont_upcast_attention:
    print("disabling upcasting of attention")
    _ATTN_PRECISION = "fp16"
else:
    _ATTN_PRECISION = "fp32"
comfyanonymous's avatar
comfyanonymous committed
27

28

comfyanonymous's avatar
comfyanonymous committed
29
30
31
32
33
34
35
36
37
38
39
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
40
    return d
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
56
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
57
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
58
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
66
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
71
            operations.Linear(dim, inner_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
72
            nn.GELU()
comfyanonymous's avatar
comfyanonymous committed
73
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
74
75
76
77

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
comfyanonymous's avatar
comfyanonymous committed
78
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        )

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


94
95
def Normalize(in_channels, dtype=None, device=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
96

97
98
99
100
101
102
103
104
105
106
107
108
def attention_basic(q, k, v, heads, mask=None):
    h = heads
    scale = (q.shape[-1] // heads) ** -0.5
    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

    # force cast to fp32 to avoid overflowing
    if _ATTN_PRECISION =="fp32":
        with torch.autocast(enabled=False, device_type = 'cuda'):
            q, k = q.float(), k.float()
            sim = einsum('b i d, b j d -> b i j', q, k) * scale
    else:
        sim = einsum('b i d, b j d -> b i j', q, k) * scale
comfyanonymous's avatar
comfyanonymous committed
109

110
    del q, k
comfyanonymous's avatar
comfyanonymous committed
111

112
113
114
115
116
    if exists(mask):
        mask = rearrange(mask, 'b ... -> b (...)')
        max_neg_value = -torch.finfo(sim.dtype).max
        mask = repeat(mask, 'b j -> (b h) () j', h=h)
        sim.masked_fill_(~mask, max_neg_value)
comfyanonymous's avatar
comfyanonymous committed
117

118
119
    # attention, what we cannot get enough of
    sim = sim.softmax(dim=-1)
comfyanonymous's avatar
comfyanonymous committed
120

121
122
123
    out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
    return out
comfyanonymous's avatar
comfyanonymous committed
124
125


126
def attention_sub_quad(query, key, value, heads, mask=None):
127
128
129
130
131
132
133
134
    b, _, dim_head = query.shape
    dim_head //= heads

    scale = dim_head ** -0.5
    query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
    value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)

    key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
comfyanonymous's avatar
comfyanonymous committed
135

136
137
138
139
140
141
142
    dtype = query.dtype
    upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
    if upcast_attention:
        bytes_per_token = torch.finfo(torch.float32).bits//8
    else:
        bytes_per_token = torch.finfo(query.dtype).bits//8
    batch_x_heads, q_tokens, _ = query.shape
143
    _, _, k_tokens = key.shape
144
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
comfyanonymous's avatar
comfyanonymous committed
145

146
    mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
comfyanonymous's avatar
comfyanonymous committed
147

148
    chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
comfyanonymous's avatar
comfyanonymous committed
149

150
    kv_chunk_size_min = None
comfyanonymous's avatar
comfyanonymous committed
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    #not sure at all about the math here
    #TODO: tweak this
    if mem_free_total > 8192 * 1024 * 1024 * 1.3:
        query_chunk_size_x = 1024 * 4
    elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
        query_chunk_size_x = 1024 * 2
    else:
        query_chunk_size_x = 1024
    kv_chunk_size_min_x = None
    kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
    if kv_chunk_size_x < 1024:
        kv_chunk_size_x = None

    if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
        # the big matmul fits into our memory limit; do everything in 1 chunk,
        # i.e. send it down the unchunked fast-path
        query_chunk_size = q_tokens
        kv_chunk_size = k_tokens
    else:
        query_chunk_size = query_chunk_size_x
        kv_chunk_size = kv_chunk_size_x
        kv_chunk_size_min = kv_chunk_size_min_x

    hidden_states = efficient_dot_product_attention(
        query,
177
        key,
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        value,
        query_chunk_size=query_chunk_size,
        kv_chunk_size=kv_chunk_size,
        kv_chunk_size_min=kv_chunk_size_min,
        use_checkpoint=False,
        upcast_attention=upcast_attention,
    )

    hidden_states = hidden_states.to(dtype)

    hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
    return hidden_states

def attention_split(q, k, v, heads, mask=None):
192
193
194
195
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

196
    h = heads
197
198
199
200
201
202
203
204
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

    mem_free_total = model_management.get_free_memory(q.device)

    gb = 1024 ** 3
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
    modifier = 3 if q.element_size() == 2 else 2.5
    mem_required = tensor_size * modifier
    steps = 1


    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
        #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

    if steps > 64:
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                            f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

    # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
    first_op_done = False
    cleared_cache = False
    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                if _ATTN_PRECISION =="fp32":
                    with torch.autocast(enabled=False, device_type = 'cuda'):
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
comfyanonymous's avatar
comfyanonymous committed
238
                else:
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
                    s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
                first_op_done = True

                s2 = s1.softmax(dim=-1).to(v.dtype)
                del s1

                r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
            if first_op_done == False:
                model_management.soft_empty_cache(True)
                if cleared_cache == False:
                    cleared_cache = True
                    print("out of memory error, emptying cache and trying again")
                    continue
                steps *= 2
                if steps > 64:
comfyanonymous's avatar
comfyanonymous committed
257
                    raise e
258
259
260
261
262
263
                print("out of memory error, increasing steps and trying again", steps)
            else:
                raise e

    del q, k, v

264
265
266
267
268
269
270
    r1 = (
        r1.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return r1
271
272

def attention_xformers(q, k, v, heads, mask=None):
273
274
275
    b, _, dim_head = q.shape
    dim_head //= heads

276
277
    q, k, v = map(
        lambda t: t.unsqueeze(3)
278
        .reshape(b, -1, heads, dim_head)
279
        .permute(0, 2, 1, 3)
280
        .reshape(b * heads, -1, dim_head)
281
282
283
284
285
286
287
288
289
290
291
        .contiguous(),
        (q, k, v),
    )

    # actually compute the attention, what we cannot get enough of
    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)

    if exists(mask):
        raise NotImplementedError
    out = (
        out.unsqueeze(0)
292
        .reshape(b, heads, -1, dim_head)
293
        .permute(0, 2, 1, 3)
294
        .reshape(b, -1, heads * dim_head)
295
296
297
298
299
300
301
302
303
304
305
    )
    return out

def attention_pytorch(q, k, v, heads, mask=None):
    b, _, dim_head = q.shape
    dim_head //= heads
    q, k, v = map(
        lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
        (q, k, v),
    )

306
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
307
308
309
310
311
    out = (
        out.transpose(1, 2).reshape(b, -1, heads * dim_head)
    )
    return out

312

313
optimized_attention = attention_basic
314
optimized_attention_masked = attention_basic
comfyanonymous's avatar
comfyanonymous committed
315

316
317
318
319
320
321
322
323
324
325
326
327
328
if model_management.xformers_enabled():
    print("Using xformers cross attention")
    optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
    print("Using pytorch cross attention")
    optimized_attention = attention_pytorch
else:
    if args.use_split_cross_attention:
        print("Using split optimization for cross attention")
        optimized_attention = attention_split
    else:
        print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
        optimized_attention = attention_sub_quad
comfyanonymous's avatar
comfyanonymous committed
329

330
331
332
if model_management.pytorch_attention_enabled():
    optimized_attention_masked = attention_pytorch

333
class CrossAttention(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
334
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
335
336
337
338
339
340
341
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
342
343
344
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
345

comfyanonymous's avatar
comfyanonymous committed
346
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
347

348
    def forward(self, x, context=None, value=None, mask=None):
349
350
351
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
352
353
354
355
356
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
357

358
359
360
361
        if mask is None:
            out = optimized_attention(q, k, v, self.heads)
        else:
            out = optimized_attention_masked(q, k, v, self.heads, mask)
362
363
        return self.to_out(out)

364

comfyanonymous's avatar
comfyanonymous committed
365
366
class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
comfyanonymous's avatar
comfyanonymous committed
367
                 disable_self_attn=False, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
368
369
        super().__init__()
        self.disable_self_attn = disable_self_attn
370
        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
371
372
                              context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
373
        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
374
                              heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
375
376
377
        self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device)
        self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device)
        self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
378
        self.checkpoint = checkpoint
379
380
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
381

382
383
    def forward(self, x, context=None, transformer_options={}):
        return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
comfyanonymous's avatar
comfyanonymous committed
384

385
    def _forward(self, x, context=None, transformer_options={}):
386
        extra_options = {}
387
388
        block = None
        block_index = 0
389
        if "current_index" in transformer_options:
390
391
            extra_options["transformer_index"] = transformer_options["current_index"]
        if "block_index" in transformer_options:
392
393
            block_index = transformer_options["block_index"]
            extra_options["block_index"] = block_index
394
395
        if "original_shape" in transformer_options:
            extra_options["original_shape"] = transformer_options["original_shape"]
396
397
398
        if "block" in transformer_options:
            block = transformer_options["block"]
            extra_options["block"] = block
399
400
        if "cond_or_uncond" in transformer_options:
            extra_options["cond_or_uncond"] = transformer_options["cond_or_uncond"]
401
402
403
404
405
        if "patches" in transformer_options:
            transformer_patches = transformer_options["patches"]
        else:
            transformer_patches = {}

406
407
408
409
410
411
412
413
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head

        if "patches_replace" in transformer_options:
            transformer_patches_replace = transformer_options["patches_replace"]
        else:
            transformer_patches_replace = {}

414
        n = self.norm1(x)
415
416
417
418
419
420
421
422
423
424
425
426
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
427
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
428

comfyanonymous's avatar
comfyanonymous committed
429
430
431
432
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
447
        else:
448
            n = self.attn1(n, context=context_attn1, value=value_attn1)
449

450
451
452
453
454
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

455
        x += n
456
457
458
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
459
                x = p(x, extra_options)
460

461
        n = self.norm2(x)
462
463
464
465
466
467
468

        context_attn2 = context
        value_attn2 = None
        if "attn2_patch" in transformer_patches:
            patch = transformer_patches["attn2_patch"]
            value_attn2 = context_attn2
            for p in patch:
469
                n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        attn2_replace_patch = transformer_patches_replace.get("attn2", {})
        block_attn2 = transformer_block
        if block_attn2 not in attn2_replace_patch:
            block_attn2 = block

        if block_attn2 in attn2_replace_patch:
            if value_attn2 is None:
                value_attn2 = context_attn2
            n = self.attn2.to_q(n)
            context_attn2 = self.attn2.to_k(context_attn2)
            value_attn2 = self.attn2.to_v(value_attn2)
            n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
            n = self.attn2.to_out(n)
        else:
            n = self.attn2(n, context=context_attn2, value=value_attn2)
486

487
488
489
490
491
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

492
        x += n
comfyanonymous's avatar
comfyanonymous committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
comfyanonymous's avatar
comfyanonymous committed
509
                 use_checkpoint=True, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
510
511
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
512
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
513
514
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
515
        self.norm = Normalize(in_channels, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
516
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
517
            self.proj_in = operations.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
518
519
520
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
521
                                     padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
522
        else:
comfyanonymous's avatar
comfyanonymous committed
523
            self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
524
525
526

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
comfyanonymous's avatar
comfyanonymous committed
527
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
528
529
530
                for d in range(depth)]
        )
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
531
            self.proj_out = operations.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
532
533
                                                  kernel_size=1,
                                                  stride=1,
534
                                                  padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
535
        else:
comfyanonymous's avatar
comfyanonymous committed
536
            self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
537
538
        self.use_linear = use_linear

539
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
540
541
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
542
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
543
544
545
546
547
548
549
550
551
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
552
            transformer_options["block_index"] = i
553
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
554
555
556
557
558
559
560
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in