attention.py 25.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any

comfyanonymous's avatar
comfyanonymous committed
9
from .diffusionmodules.util import checkpoint
comfyanonymous's avatar
comfyanonymous committed
10
11
from .sub_quadratic_attention import efficient_dot_product_attention

12
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
13
import comfy.ops
14

15
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
16
17
18
19
20
21
22
    import xformers
    import xformers.ops

# CrossAttn precision handling
import os
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")

comfyanonymous's avatar
comfyanonymous committed
23
from comfy.cli_args import args
24

comfyanonymous's avatar
comfyanonymous committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
52
    def __init__(self, dim_in, dim_out, dtype=None):
comfyanonymous's avatar
comfyanonymous committed
53
        super().__init__()
54
        self.proj = comfy.ops.Linear(dim_in, dim_out * 2, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
55
56
57
58
59
60
61

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
62
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None):
comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
67
            comfy.ops.Linear(dim, inner_dim, dtype=dtype),
comfyanonymous's avatar
comfyanonymous committed
68
            nn.GELU()
69
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
70
71
72
73

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
74
            comfy.ops.Linear(inner_dim, dim_out, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        )

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


90
91
def Normalize(in_channels, dtype=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147


class SpatialSelfAttention(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.k = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.v = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b,c,h,w = q.shape
        q = rearrange(q, 'b c h w -> b (h w) c')
        k = rearrange(k, 'b c h w -> b c (h w)')
        w_ = torch.einsum('bij,bjk->bik', q, k)

        w_ = w_ * (int(c)**(-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = rearrange(v, 'b c h w -> b c (h w)')
        w_ = rearrange(w_, 'b i j -> b j i')
        h_ = torch.einsum('bij,bjk->bik', v, w_)
        h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
        h_ = self.proj_out(h_)

        return x+h_


class CrossAttentionBirchSan(nn.Module):
148
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
comfyanonymous's avatar
comfyanonymous committed
149
150
151
152
153
154
155
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads

156
157
158
        self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
        self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
        self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
159
160

        self.to_out = nn.Sequential(
161
            comfy.ops.Linear(inner_dim, query_dim, dtype=dtype),
comfyanonymous's avatar
comfyanonymous committed
162
163
164
            nn.Dropout(dropout)
        )

165
    def forward(self, x, context=None, value=None, mask=None):
comfyanonymous's avatar
comfyanonymous committed
166
167
168
169
170
        h = self.heads

        query = self.to_q(x)
        context = default(context, x)
        key = self.to_k(context)
171
172
173
174
175
        if value is not None:
            value = self.to_v(value)
        else:
            value = self.to_v(context)

comfyanonymous's avatar
comfyanonymous committed
176
177
178
179
180
181
182
183
        del context, x

        query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
        key_t = key.transpose(1,2).unflatten(1, (self.heads, -1)).flatten(end_dim=1)
        del key
        value = value.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)

        dtype = query.dtype
184
185
186
187
188
        upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
        if upcast_attention:
            bytes_per_token = torch.finfo(torch.float32).bits//8
        else:
            bytes_per_token = torch.finfo(query.dtype).bits//8
comfyanonymous's avatar
comfyanonymous committed
189
190
191
192
        batch_x_heads, q_tokens, _ = query.shape
        _, _, k_tokens = key_t.shape
        qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens

193
194
        mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)

comfyanonymous's avatar
comfyanonymous committed
195
196
197
198
        chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD

        kv_chunk_size_min = None

199
200
201
202
203
204
205
206
        #not sure at all about the math here
        #TODO: tweak this
        if mem_free_total > 8192 * 1024 * 1024 * 1.3:
            query_chunk_size_x = 1024 * 4
        elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
            query_chunk_size_x = 1024 * 2
        else:
            query_chunk_size_x = 1024
comfyanonymous's avatar
comfyanonymous committed
207
        kv_chunk_size_min_x = None
208
        kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
comfyanonymous's avatar
comfyanonymous committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        if kv_chunk_size_x < 1024:
            kv_chunk_size_x = None

        if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
            # the big matmul fits into our memory limit; do everything in 1 chunk,
            # i.e. send it down the unchunked fast-path
            query_chunk_size = q_tokens
            kv_chunk_size = k_tokens
        else:
            query_chunk_size = query_chunk_size_x
            kv_chunk_size = kv_chunk_size_x
            kv_chunk_size_min = kv_chunk_size_min_x

        hidden_states = efficient_dot_product_attention(
            query,
            key_t,
            value,
            query_chunk_size=query_chunk_size,
            kv_chunk_size=kv_chunk_size,
            kv_chunk_size_min=kv_chunk_size_min,
            use_checkpoint=self.training,
230
            upcast_attention=upcast_attention,
comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        )

        hidden_states = hidden_states.to(dtype)

        hidden_states = hidden_states.unflatten(0, (-1, self.heads)).transpose(1,2).flatten(start_dim=2)

        out_proj, dropout = self.to_out
        hidden_states = out_proj(hidden_states)
        hidden_states = dropout(hidden_states)

        return hidden_states


class CrossAttentionDoggettx(nn.Module):
245
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
comfyanonymous's avatar
comfyanonymous committed
246
247
248
249
250
251
252
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads

253
254
255
        self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
        self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
        self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
256
257

        self.to_out = nn.Sequential(
258
            comfy.ops.Linear(inner_dim, query_dim, dtype=dtype),
comfyanonymous's avatar
comfyanonymous committed
259
260
261
            nn.Dropout(dropout)
        )

262
    def forward(self, x, context=None, value=None, mask=None):
comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
267
        h = self.heads

        q_in = self.to_q(x)
        context = default(context, x)
        k_in = self.to_k(context)
268
269
270
271
272
        if value is not None:
            v_in = self.to_v(value)
            del value
        else:
            v_in = self.to_v(context)
comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
277
278
279
        del context, x

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
        del q_in, k_in, v_in

        r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)

280
        mem_free_total = model_management.get_free_memory(q.device)
comfyanonymous's avatar
comfyanonymous committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

        gb = 1024 ** 3
        tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
        modifier = 3 if q.element_size() == 2 else 2.5
        mem_required = tensor_size * modifier
        steps = 1


        if mem_required > mem_free_total:
            steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
            # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
            #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

        if steps > 64:
            max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
            raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                               f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

        # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
        first_op_done = False
        cleared_cache = False
        while True:
            try:
                slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
                for i in range(0, q.shape[1], slice_size):
                    end = i + slice_size
                    if _ATTN_PRECISION =="fp32":
                        with torch.autocast(enabled=False, device_type = 'cuda'):
                            s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * self.scale
                    else:
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
                    first_op_done = True

                    s2 = s1.softmax(dim=-1)
                    del s1

                    r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                    del s2
                break
320
            except model_management.OOM_EXCEPTION as e:
comfyanonymous's avatar
comfyanonymous committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                if first_op_done == False:
                    torch.cuda.empty_cache()
                    torch.cuda.ipc_collect()
                    if cleared_cache == False:
                        cleared_cache = True
                        print("out of memory error, emptying cache and trying again")
                        continue
                    steps *= 2
                    if steps > 64:
                        raise e
                    print("out of memory error, increasing steps and trying again", steps)
                else:
                    raise e

        del q, k, v

        r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
        del r1

        return self.to_out(r2)

342
class CrossAttention(nn.Module):
343
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
comfyanonymous's avatar
comfyanonymous committed
344
345
346
347
348
349
350
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads

351
352
353
        self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
        self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
        self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
354
355

        self.to_out = nn.Sequential(
356
            comfy.ops.Linear(inner_dim, query_dim, dtype=dtype),
comfyanonymous's avatar
comfyanonymous committed
357
358
359
            nn.Dropout(dropout)
        )

360
    def forward(self, x, context=None, value=None, mask=None):
comfyanonymous's avatar
comfyanonymous committed
361
362
363
364
365
        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
366
367
368
369
370
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
comfyanonymous's avatar
comfyanonymous committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

        # force cast to fp32 to avoid overflowing
        if _ATTN_PRECISION =="fp32":
            with torch.autocast(enabled=False, device_type = 'cuda'):
                q, k = q.float(), k.float()
                sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
        else:
            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale

        del q, k

        if exists(mask):
            mask = rearrange(mask, 'b ... -> b (...)')
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        sim = sim.softmax(dim=-1)

        out = einsum('b i j, b j d -> b i d', sim, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
        return self.to_out(out)

class MemoryEfficientCrossAttention(nn.Module):
    # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
399
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None):
comfyanonymous's avatar
comfyanonymous committed
400
401
402
403
404
405
406
407
408
        super().__init__()
        print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
              f"{heads} heads.")
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

409
410
411
        self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
        self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
        self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
412

413
        self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype), nn.Dropout(dropout))
comfyanonymous's avatar
comfyanonymous committed
414
415
        self.attention_op: Optional[Any] = None

416
    def forward(self, x, context=None, value=None, mask=None):
comfyanonymous's avatar
comfyanonymous committed
417
418
419
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
420
421
422
423
424
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
comfyanonymous's avatar
comfyanonymous committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

        b, _, _ = q.shape
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, t.shape[1], self.heads, self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * self.heads, t.shape[1], self.dim_head)
            .contiguous(),
            (q, k, v),
        )

        # actually compute the attention, what we cannot get enough of
        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)

        if exists(mask):
            raise NotImplementedError
        out = (
            out.unsqueeze(0)
            .reshape(b, self.heads, out.shape[1], self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b, out.shape[1], self.heads * self.dim_head)
        )
        return self.to_out(out)

449
class CrossAttentionPytorch(nn.Module):
450
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
451
452
453
454
455
456
457
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

458
459
460
        self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
        self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
        self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
461

462
        self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype), nn.Dropout(dropout))
463
464
        self.attention_op: Optional[Any] = None

465
    def forward(self, x, context=None, value=None, mask=None):
466
467
468
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
469
470
471
472
473
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
474
475
476

        b, _, _ = q.shape
        q, k, v = map(
477
            lambda t: t.view(b, -1, self.heads, self.dim_head).transpose(1, 2),
478
479
480
481
482
483
484
485
            (q, k, v),
        )

        out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)

        if exists(mask):
            raise NotImplementedError
        out = (
486
            out.transpose(1, 2).reshape(b, -1, self.heads * self.dim_head)
487
488
489
490
        )

        return self.to_out(out)

491
492
493
494
495
496
497
if model_management.xformers_enabled():
    print("Using xformers cross attention")
    CrossAttention = MemoryEfficientCrossAttention
elif model_management.pytorch_attention_enabled():
    print("Using pytorch cross attention")
    CrossAttention = CrossAttentionPytorch
else:
498
    if args.use_split_cross_attention:
499
500
501
        print("Using split optimization for cross attention")
        CrossAttention = CrossAttentionDoggettx
    else:
502
503
        print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
        CrossAttention = CrossAttentionBirchSan
comfyanonymous's avatar
comfyanonymous committed
504

505

comfyanonymous's avatar
comfyanonymous committed
506
507
class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
508
                 disable_self_attn=False, dtype=None):
comfyanonymous's avatar
comfyanonymous committed
509
510
        super().__init__()
        self.disable_self_attn = disable_self_attn
511
        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
512
513
                              context_dim=context_dim if self.disable_self_attn else None, dtype=dtype)  # is a self-attention if not self.disable_self_attn
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype)
514
        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
515
516
517
518
                              heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype)  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim, dtype=dtype)
        self.norm2 = nn.LayerNorm(dim, dtype=dtype)
        self.norm3 = nn.LayerNorm(dim, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
519
        self.checkpoint = checkpoint
520
521
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
522

523
524
    def forward(self, x, context=None, transformer_options={}):
        return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
comfyanonymous's avatar
comfyanonymous committed
525

526
    def _forward(self, x, context=None, transformer_options={}):
527
        extra_options = {}
528
529
        block = None
        block_index = 0
530
        if "current_index" in transformer_options:
531
532
            extra_options["transformer_index"] = transformer_options["current_index"]
        if "block_index" in transformer_options:
533
534
            block_index = transformer_options["block_index"]
            extra_options["block_index"] = block_index
535
536
        if "original_shape" in transformer_options:
            extra_options["original_shape"] = transformer_options["original_shape"]
537
538
539
        if "block" in transformer_options:
            block = transformer_options["block"]
            extra_options["block"] = block
540
541
542
543
544
        if "patches" in transformer_options:
            transformer_patches = transformer_options["patches"]
        else:
            transformer_patches = {}

545
546
547
548
549
550
551
552
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head

        if "patches_replace" in transformer_options:
            transformer_patches_replace = transformer_options["patches_replace"]
        else:
            transformer_patches_replace = {}

553
        n = self.norm1(x)
554
555
556
557
558
559
560
561
562
563
564
565
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
566
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
567

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        transformer_block = (block[0], block[1], block_index)
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
583
        else:
584
            n = self.attn1(n, context=context_attn1, value=value_attn1)
585

586
587
588
589
590
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

591
        x += n
592
593
594
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
595
                x = p(x, extra_options)
596

597
        n = self.norm2(x)
598
599
600
601
602
603
604

        context_attn2 = context
        value_attn2 = None
        if "attn2_patch" in transformer_patches:
            patch = transformer_patches["attn2_patch"]
            value_attn2 = context_attn2
            for p in patch:
605
                n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
606

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
        attn2_replace_patch = transformer_patches_replace.get("attn2", {})
        block_attn2 = transformer_block
        if block_attn2 not in attn2_replace_patch:
            block_attn2 = block

        if block_attn2 in attn2_replace_patch:
            if value_attn2 is None:
                value_attn2 = context_attn2
            n = self.attn2.to_q(n)
            context_attn2 = self.attn2.to_k(context_attn2)
            value_attn2 = self.attn2.to_v(value_attn2)
            n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
            n = self.attn2.to_out(n)
        else:
            n = self.attn2(n, context=context_attn2, value=value_attn2)
622

623
624
625
626
627
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

628
        x += n
comfyanonymous's avatar
comfyanonymous committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
645
                 use_checkpoint=True, dtype=None):
comfyanonymous's avatar
comfyanonymous committed
646
647
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
648
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
649
650
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
651
        self.norm = Normalize(in_channels, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
652
653
654
655
656
        if not use_linear:
            self.proj_in = nn.Conv2d(in_channels,
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
657
                                     padding=0, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
658
        else:
659
            self.proj_in = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
660
661
662

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
663
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
664
665
666
                for d in range(depth)]
        )
        if not use_linear:
667
            self.proj_out = nn.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
668
669
                                                  kernel_size=1,
                                                  stride=1,
670
                                                  padding=0, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
671
        else:
672
            self.proj_out = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype)
comfyanonymous's avatar
comfyanonymous committed
673
674
        self.use_linear = use_linear

675
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
676
677
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
678
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
679
680
681
682
683
684
685
686
687
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
688
            transformer_options["block_index"] = i
689
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
690
691
692
693
694
695
696
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in