attention.py 28.3 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any
7
import logging
comfyanonymous's avatar
comfyanonymous committed
8
9

from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
comfyanonymous's avatar
comfyanonymous committed
10
11
from .sub_quadratic_attention import efficient_dot_product_attention

12
from comfy import model_management
13

14
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
15
16
17
    import xformers
    import xformers.ops

comfyanonymous's avatar
comfyanonymous committed
18
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
19
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
20
ops = comfy.ops.disable_weight_init
comfyanonymous's avatar
comfyanonymous committed
21

comfyanonymous's avatar
comfyanonymous committed
22
# CrossAttn precision handling
comfyanonymous's avatar
comfyanonymous committed
23
if args.dont_upcast_attention:
24
    logging.info("disabling upcasting of attention")
comfyanonymous's avatar
comfyanonymous committed
25
26
27
    _ATTN_PRECISION = "fp16"
else:
    _ATTN_PRECISION = "fp32"
comfyanonymous's avatar
comfyanonymous committed
28

29

comfyanonymous's avatar
comfyanonymous committed
30
31
32
33
34
35
36
37
38
39
40
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
41
    return d
comfyanonymous's avatar
comfyanonymous committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
57
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
58
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
59
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
65
66

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
67
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
68
69
70
71
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
72
            operations.Linear(dim, inner_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
73
            nn.GELU()
comfyanonymous's avatar
comfyanonymous committed
74
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
75
76
77
78

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
comfyanonymous's avatar
comfyanonymous committed
79
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84
        )

    def forward(self, x):
        return self.net(x)

85
86
def Normalize(in_channels, dtype=None, device=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
87

88
def attention_basic(q, k, v, heads, mask=None):
89
90
91
92
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

93
    h = heads
94
95
96
97
98
99
100
101
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
102
103
104

    # force cast to fp32 to avoid overflowing
    if _ATTN_PRECISION =="fp32":
comfyanonymous's avatar
comfyanonymous committed
105
        sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
106
107
    else:
        sim = einsum('b i d, b j d -> b i j', q, k) * scale
comfyanonymous's avatar
comfyanonymous committed
108

109
    del q, k
comfyanonymous's avatar
comfyanonymous committed
110

111
    if exists(mask):
112
113
114
115
116
117
        if mask.dtype == torch.bool:
            mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)
        else:
118
119
120
121
            if len(mask.shape) == 2:
                bs = 1
            else:
                bs = mask.shape[0]
122
            mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
123
            sim.add_(mask)
comfyanonymous's avatar
comfyanonymous committed
124

125
126
    # attention, what we cannot get enough of
    sim = sim.softmax(dim=-1)
comfyanonymous's avatar
comfyanonymous committed
127

128
    out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
129
130
131
132
133
134
    out = (
        out.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
135
    return out
comfyanonymous's avatar
comfyanonymous committed
136
137


138
def attention_sub_quad(query, key, value, heads, mask=None):
139
140
141
142
143
144
145
146
    b, _, dim_head = query.shape
    dim_head //= heads

    scale = dim_head ** -0.5
    query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
    value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)

    key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
comfyanonymous's avatar
comfyanonymous committed
147

148
149
150
151
152
153
154
    dtype = query.dtype
    upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
    if upcast_attention:
        bytes_per_token = torch.finfo(torch.float32).bits//8
    else:
        bytes_per_token = torch.finfo(query.dtype).bits//8
    batch_x_heads, q_tokens, _ = query.shape
155
    _, _, k_tokens = key.shape
156
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
comfyanonymous's avatar
comfyanonymous committed
157

158
    mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
comfyanonymous's avatar
comfyanonymous committed
159

160
    kv_chunk_size_min = None
161
162
163
164
165
166
167
168
169
170
171
172
    kv_chunk_size = None
    query_chunk_size = None

    for x in [4096, 2048, 1024, 512, 256]:
        count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
        if count >= k_tokens:
            kv_chunk_size = k_tokens
            query_chunk_size = x
            break

    if query_chunk_size is None:
        query_chunk_size = 512
173

174
    if mask is not None:
175
176
177
178
        if len(mask.shape) == 2:
            bs = 1
        else:
            bs = mask.shape[0]
179
        mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
180

181
182
    hidden_states = efficient_dot_product_attention(
        query,
183
        key,
184
185
186
187
188
189
        value,
        query_chunk_size=query_chunk_size,
        kv_chunk_size=kv_chunk_size,
        kv_chunk_size_min=kv_chunk_size_min,
        use_checkpoint=False,
        upcast_attention=upcast_attention,
190
        mask=mask,
191
192
193
194
195
196
197
198
    )

    hidden_states = hidden_states.to(dtype)

    hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
    return hidden_states

def attention_split(q, k, v, heads, mask=None):
199
200
201
202
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

203
    h = heads
204
205
206
207
208
209
210
211
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
212
213
214
215
216

    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

    mem_free_total = model_management.get_free_memory(q.device)

217
218
219
220
221
    if _ATTN_PRECISION =="fp32":
        element_size = 4
    else:
        element_size = q.element_size()

222
    gb = 1024 ** 3
223
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
224
    modifier = 3
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    mem_required = tensor_size * modifier
    steps = 1


    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
        #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

    if steps > 64:
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                            f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

239
    if mask is not None:
240
241
242
243
        if len(mask.shape) == 2:
            bs = 1
        else:
            bs = mask.shape[0]
244
        mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
245

246
247
248
249
250
251
252
253
254
255
256
    # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
    first_op_done = False
    cleared_cache = False
    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                if _ATTN_PRECISION =="fp32":
                    with torch.autocast(enabled=False, device_type = 'cuda'):
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
comfyanonymous's avatar
comfyanonymous committed
257
                else:
258
259
                    s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale

260
261
262
263
264
265
                if mask is not None:
                    if len(mask.shape) == 2:
                        s1 += mask[i:end]
                    else:
                        s1 += mask[:, i:end]

266
267
                s2 = s1.softmax(dim=-1).to(v.dtype)
                del s1
268
                first_op_done = True
269
270
271
272
273
274
275
276
277

                r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
            if first_op_done == False:
                model_management.soft_empty_cache(True)
                if cleared_cache == False:
                    cleared_cache = True
278
                    logging.warning("out of memory error, emptying cache and trying again")
279
280
281
                    continue
                steps *= 2
                if steps > 64:
comfyanonymous's avatar
comfyanonymous committed
282
                    raise e
283
                logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
284
285
286
287
288
            else:
                raise e

    del q, k, v

289
290
291
292
293
294
295
    r1 = (
        r1.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return r1
296

297
298
299
300
301
302
303
304
BROKEN_XFORMERS = False
try:
    x_vers = xformers.__version__
    #I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error)
    BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23")
except:
    pass

305
def attention_xformers(q, k, v, heads, mask=None):
306
307
    b, _, dim_head = q.shape
    dim_head //= heads
308
309
310
    if BROKEN_XFORMERS:
        if b * heads > 65535:
            return attention_pytorch(q, k, v, heads, mask)
311

312
313
    q, k, v = map(
        lambda t: t.unsqueeze(3)
314
        .reshape(b, -1, heads, dim_head)
315
        .permute(0, 2, 1, 3)
316
        .reshape(b * heads, -1, dim_head)
317
318
319
320
        .contiguous(),
        (q, k, v),
    )

321
322
323
324
325
326
327
    if mask is not None:
        pad = 8 - q.shape[1] % 8
        mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
        mask_out[:, :, :mask.shape[-1]] = mask
        mask = mask_out[:, :, :mask.shape[-1]]

    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
328
329
330

    out = (
        out.unsqueeze(0)
331
        .reshape(b, heads, -1, dim_head)
332
        .permute(0, 2, 1, 3)
333
        .reshape(b, -1, heads * dim_head)
334
335
336
337
338
339
340
341
342
343
344
    )
    return out

def attention_pytorch(q, k, v, heads, mask=None):
    b, _, dim_head = q.shape
    dim_head //= heads
    q, k, v = map(
        lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
        (q, k, v),
    )

345
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
346
347
348
349
350
    out = (
        out.transpose(1, 2).reshape(b, -1, heads * dim_head)
    )
    return out

351

352
optimized_attention = attention_basic
comfyanonymous's avatar
comfyanonymous committed
353

354
if model_management.xformers_enabled():
355
    logging.info("Using xformers cross attention")
356
357
    optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
358
    logging.info("Using pytorch cross attention")
359
360
361
    optimized_attention = attention_pytorch
else:
    if args.use_split_cross_attention:
362
        logging.info("Using split optimization for cross attention")
363
364
        optimized_attention = attention_split
    else:
365
        logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
366
        optimized_attention = attention_sub_quad
comfyanonymous's avatar
comfyanonymous committed
367

368
369
370
optimized_attention_masked = optimized_attention

def optimized_attention_for_device(device, mask=False, small_input=False):
371
372
373
374
375
    if small_input:
        if model_management.pytorch_attention_enabled():
            return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
        else:
            return attention_basic
376
377
378

    if device == torch.device("cpu"):
        return attention_sub_quad
379

380
381
382
383
384
385
    if mask:
        return optimized_attention_masked

    return optimized_attention


386
class CrossAttention(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
387
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=ops):
388
389
390
391
392
393
394
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
395
396
397
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
398

comfyanonymous's avatar
comfyanonymous committed
399
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
400

401
    def forward(self, x, context=None, value=None, mask=None):
402
403
404
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
405
406
407
408
409
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
410

411
412
413
414
        if mask is None:
            out = optimized_attention(q, k, v, self.heads)
        else:
            out = optimized_attention_masked(q, k, v, self.heads, mask)
415
416
        return self.to_out(out)

417

comfyanonymous's avatar
comfyanonymous committed
418
class BasicTransformerBlock(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
419
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
comfyanonymous's avatar
comfyanonymous committed
420
                 disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
421
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
422
423
424
425
426
427
428
429

        self.ff_in = ff_in or inner_dim is not None
        if inner_dim is None:
            inner_dim = dim

        self.is_res = inner_dim == dim

        if self.ff_in:
comfyanonymous's avatar
comfyanonymous committed
430
            self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
431
432
            self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

comfyanonymous's avatar
comfyanonymous committed
433
        self.disable_self_attn = disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
434
        self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
435
                              context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

        if disable_temporal_crossattention:
            if switch_temporal_ca_to_sa:
                raise ValueError
            else:
                self.attn2 = None
        else:
            context_dim_attn2 = None
            if not switch_temporal_ca_to_sa:
                context_dim_attn2 = context_dim

            self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
                                heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
450
            self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
451

452
453
        self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
        self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
454
        self.checkpoint = checkpoint
455
456
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
457
        self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
comfyanonymous's avatar
comfyanonymous committed
458

459
460
    def forward(self, x, context=None, transformer_options={}):
        return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
comfyanonymous's avatar
comfyanonymous committed
461

462
    def _forward(self, x, context=None, transformer_options={}):
463
        extra_options = {}
464
465
        block = transformer_options.get("block", None)
        block_index = transformer_options.get("block_index", 0)
466
467
468
469
470
471
472
473
474
475
        transformer_patches = {}
        transformer_patches_replace = {}

        for k in transformer_options:
            if k == "patches":
                transformer_patches = transformer_options[k]
            elif k == "patches_replace":
                transformer_patches_replace = transformer_options[k]
            else:
                extra_options[k] = transformer_options[k]
476

477
478
479
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head

comfyanonymous's avatar
comfyanonymous committed
480
481
482
483
484
485
        if self.ff_in:
            x_skip = x
            x = self.ff_in(self.norm_in(x))
            if self.is_res:
                x += x_skip

486
        n = self.norm1(x)
487
488
489
490
491
492
493
494
495
496
497
498
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
499
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
500

comfyanonymous's avatar
comfyanonymous committed
501
502
503
504
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
519
        else:
520
            n = self.attn1(n, context=context_attn1, value=value_attn1)
521

522
523
524
525
526
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

527
        x += n
528
529
530
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
531
                x = p(x, extra_options)
532

comfyanonymous's avatar
comfyanonymous committed
533
534
535
536
537
538
539
540
541
        if self.attn2 is not None:
            n = self.norm2(x)
            if self.switch_temporal_ca_to_sa:
                context_attn2 = n
            else:
                context_attn2 = context
            value_attn2 = None
            if "attn2_patch" in transformer_patches:
                patch = transformer_patches["attn2_patch"]
542
                value_attn2 = context_attn2
comfyanonymous's avatar
comfyanonymous committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
                for p in patch:
                    n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)

            attn2_replace_patch = transformer_patches_replace.get("attn2", {})
            block_attn2 = transformer_block
            if block_attn2 not in attn2_replace_patch:
                block_attn2 = block

            if block_attn2 in attn2_replace_patch:
                if value_attn2 is None:
                    value_attn2 = context_attn2
                n = self.attn2.to_q(n)
                context_attn2 = self.attn2.to_k(context_attn2)
                value_attn2 = self.attn2.to_v(value_attn2)
                n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
                n = self.attn2.to_out(n)
            else:
                n = self.attn2(n, context=context_attn2, value=value_attn2)
561

562
563
564
565
566
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

567
        x += n
comfyanonymous's avatar
comfyanonymous committed
568
569
570
571
572
573
        if self.is_res:
            x_skip = x
        x = self.ff(self.norm3(x))
        if self.is_res:
            x += x_skip

comfyanonymous's avatar
comfyanonymous committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
comfyanonymous's avatar
comfyanonymous committed
589
                 use_checkpoint=True, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
590
591
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
592
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
593
594
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
595
        self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
596
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
597
            self.proj_in = operations.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
598
599
600
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
601
                                     padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
602
        else:
comfyanonymous's avatar
comfyanonymous committed
603
            self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
604
605
606

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
comfyanonymous's avatar
comfyanonymous committed
607
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
608
609
610
                for d in range(depth)]
        )
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
611
            self.proj_out = operations.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
612
613
                                                  kernel_size=1,
                                                  stride=1,
614
                                                  padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
615
        else:
comfyanonymous's avatar
comfyanonymous committed
616
            self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
617
618
        self.use_linear = use_linear

619
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
620
621
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
622
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
623
624
625
626
627
628
629
630
631
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
632
            transformer_options["block_index"] = i
633
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
634
635
636
637
638
639
640
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in

comfyanonymous's avatar
comfyanonymous committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

class SpatialVideoTransformer(SpatialTransformer):
    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        use_linear=False,
        context_dim=None,
        use_spatial_context=False,
        timesteps=None,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        time_context_dim=None,
        ff_in=False,
        checkpoint=False,
        time_depth=1,
        disable_self_attn=False,
        disable_temporal_crossattention=False,
        max_time_embed_period: int = 10000,
comfyanonymous's avatar
comfyanonymous committed
663
        dtype=None, device=None, operations=ops
comfyanonymous's avatar
comfyanonymous committed
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
    ):
        super().__init__(
            in_channels,
            n_heads,
            d_head,
            depth=depth,
            dropout=dropout,
            use_checkpoint=checkpoint,
            context_dim=context_dim,
            use_linear=use_linear,
            disable_self_attn=disable_self_attn,
            dtype=dtype, device=device, operations=operations
        )
        self.time_depth = time_depth
        self.depth = depth
        self.max_time_embed_period = max_time_embed_period

        time_mix_d_head = d_head
        n_time_mix_heads = n_heads

        time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)

        inner_dim = n_heads * d_head
        if use_spatial_context:
            time_context_dim = context_dim

        self.time_stack = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    n_time_mix_heads,
                    time_mix_d_head,
                    dropout=dropout,
                    context_dim=time_context_dim,
                    # timesteps=timesteps,
                    checkpoint=checkpoint,
                    ff_in=ff_in,
                    inner_dim=time_mix_inner_dim,
                    disable_self_attn=disable_self_attn,
                    disable_temporal_crossattention=disable_temporal_crossattention,
                    dtype=dtype, device=device, operations=operations
                )
                for _ in range(self.depth)
            ]
        )

        assert len(self.time_stack) == len(self.transformer_blocks)

        self.use_spatial_context = use_spatial_context
        self.in_channels = in_channels

        time_embed_dim = self.in_channels * 4
        self.time_pos_embed = nn.Sequential(
            operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
        )

        self.time_mixer = AlphaBlender(
            alpha=merge_factor, merge_strategy=merge_strategy
        )

    def forward(
        self,
        x: torch.Tensor,
        context: Optional[torch.Tensor] = None,
        time_context: Optional[torch.Tensor] = None,
        timesteps: Optional[int] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
        transformer_options={}
    ) -> torch.Tensor:
        _, _, h, w = x.shape
        x_in = x
        spatial_context = None
        if exists(context):
            spatial_context = context

        if self.use_spatial_context:
            assert (
                context.ndim == 3
            ), f"n dims of spatial context should be 3 but are {context.ndim}"

            if time_context is None:
                time_context = context
            time_context_first_timestep = time_context[::timesteps]
            time_context = repeat(
                time_context_first_timestep, "b ... -> (b n) ...", n=h * w
            )
        elif time_context is not None and not self.use_spatial_context:
            time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
            if time_context.ndim == 2:
                time_context = rearrange(time_context, "b c -> b 1 c")

        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        if self.use_linear:
            x = self.proj_in(x)

        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
        emb = self.time_pos_embed(t_emb)
        emb = emb[:, None, :]

        for it_, (block, mix_block) in enumerate(
            zip(self.transformer_blocks, self.time_stack)
        ):
            transformer_options["block_index"] = it_
            x = block(
                x,
                context=spatial_context,
                transformer_options=transformer_options,
            )

            x_mix = x
            x_mix = x_mix + emb

            B, S, C = x_mix.shape
            x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
            x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
            x_mix = rearrange(
                x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
            )

            x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)

        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        if not self.use_linear:
            x = self.proj_out(x)
        out = x + x_in
        return out