attention.py 27.9 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any
comfyanonymous's avatar
comfyanonymous committed
7
8

from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
comfyanonymous's avatar
comfyanonymous committed
9
10
from .sub_quadratic_attention import efficient_dot_product_attention

11
from comfy import model_management
12

13
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
14
15
16
    import xformers
    import xformers.ops

comfyanonymous's avatar
comfyanonymous committed
17
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
18
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
19
ops = comfy.ops.disable_weight_init
comfyanonymous's avatar
comfyanonymous committed
20

comfyanonymous's avatar
comfyanonymous committed
21
# CrossAttn precision handling
comfyanonymous's avatar
comfyanonymous committed
22
23
24
25
26
if args.dont_upcast_attention:
    print("disabling upcasting of attention")
    _ATTN_PRECISION = "fp16"
else:
    _ATTN_PRECISION = "fp32"
comfyanonymous's avatar
comfyanonymous committed
27

28

comfyanonymous's avatar
comfyanonymous committed
29
30
31
32
33
34
35
36
37
38
39
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
40
    return d
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
56
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
57
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
58
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
66
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
71
            operations.Linear(dim, inner_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
72
            nn.GELU()
comfyanonymous's avatar
comfyanonymous committed
73
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
74
75
76
77

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
comfyanonymous's avatar
comfyanonymous committed
78
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
79
80
81
82
83
        )

    def forward(self, x):
        return self.net(x)

84
85
def Normalize(in_channels, dtype=None, device=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
86

87
def attention_basic(q, k, v, heads, mask=None):
88
89
90
91
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

92
    h = heads
93
94
95
96
97
98
99
100
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
101
102
103

    # force cast to fp32 to avoid overflowing
    if _ATTN_PRECISION =="fp32":
comfyanonymous's avatar
comfyanonymous committed
104
        sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
105
106
    else:
        sim = einsum('b i d, b j d -> b i j', q, k) * scale
comfyanonymous's avatar
comfyanonymous committed
107

108
    del q, k
comfyanonymous's avatar
comfyanonymous committed
109

110
    if exists(mask):
111
112
113
114
115
116
        if mask.dtype == torch.bool:
            mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)
        else:
117
118
            mask = mask.reshape(mask.shape[0], -1, mask.shape[-2], mask.shape[-1]).expand(-1, heads, -1, -1).reshape(sim.shape)
            sim.add_(mask)
comfyanonymous's avatar
comfyanonymous committed
119

120
121
    # attention, what we cannot get enough of
    sim = sim.softmax(dim=-1)
comfyanonymous's avatar
comfyanonymous committed
122

123
    out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
124
125
126
127
128
129
    out = (
        out.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
130
    return out
comfyanonymous's avatar
comfyanonymous committed
131
132


133
def attention_sub_quad(query, key, value, heads, mask=None):
134
135
136
137
138
139
140
141
    b, _, dim_head = query.shape
    dim_head //= heads

    scale = dim_head ** -0.5
    query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
    value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)

    key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
comfyanonymous's avatar
comfyanonymous committed
142

143
144
145
146
147
148
149
    dtype = query.dtype
    upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
    if upcast_attention:
        bytes_per_token = torch.finfo(torch.float32).bits//8
    else:
        bytes_per_token = torch.finfo(query.dtype).bits//8
    batch_x_heads, q_tokens, _ = query.shape
150
    _, _, k_tokens = key.shape
151
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
comfyanonymous's avatar
comfyanonymous committed
152

153
    mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
comfyanonymous's avatar
comfyanonymous committed
154

155
    kv_chunk_size_min = None
156
157
158
159
160
161
162
163
164
165
166
167
    kv_chunk_size = None
    query_chunk_size = None

    for x in [4096, 2048, 1024, 512, 256]:
        count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
        if count >= k_tokens:
            kv_chunk_size = k_tokens
            query_chunk_size = x
            break

    if query_chunk_size is None:
        query_chunk_size = 512
168

169
170
171
    if mask is not None:
        mask = mask.reshape(mask.shape[0], -1, mask.shape[-2], mask.shape[-1]).expand(-1, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])

172
173
    hidden_states = efficient_dot_product_attention(
        query,
174
        key,
175
176
177
178
179
180
        value,
        query_chunk_size=query_chunk_size,
        kv_chunk_size=kv_chunk_size,
        kv_chunk_size_min=kv_chunk_size_min,
        use_checkpoint=False,
        upcast_attention=upcast_attention,
181
        mask=mask,
182
183
184
185
186
187
188
189
    )

    hidden_states = hidden_states.to(dtype)

    hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
    return hidden_states

def attention_split(q, k, v, heads, mask=None):
190
191
192
193
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

194
    h = heads
195
196
197
198
199
200
201
202
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
203
204
205
206
207

    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

    mem_free_total = model_management.get_free_memory(q.device)

208
209
210
211
212
    if _ATTN_PRECISION =="fp32":
        element_size = 4
    else:
        element_size = q.element_size()

213
    gb = 1024 ** 3
214
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
215
    modifier = 3
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    mem_required = tensor_size * modifier
    steps = 1


    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
        #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

    if steps > 64:
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                            f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

230
231
232
    if mask is not None:
        mask = mask.reshape(mask.shape[0], -1, mask.shape[-2], mask.shape[-1]).expand(-1, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])

233
234
235
236
237
238
239
240
241
242
243
    # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
    first_op_done = False
    cleared_cache = False
    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                if _ATTN_PRECISION =="fp32":
                    with torch.autocast(enabled=False, device_type = 'cuda'):
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
comfyanonymous's avatar
comfyanonymous committed
244
                else:
245
246
                    s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale

247
248
249
250
251
252
                if mask is not None:
                    if len(mask.shape) == 2:
                        s1 += mask[i:end]
                    else:
                        s1 += mask[:, i:end]

253
254
                s2 = s1.softmax(dim=-1).to(v.dtype)
                del s1
255
                first_op_done = True
256
257
258
259
260
261
262
263
264
265
266
267
268

                r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
            if first_op_done == False:
                model_management.soft_empty_cache(True)
                if cleared_cache == False:
                    cleared_cache = True
                    print("out of memory error, emptying cache and trying again")
                    continue
                steps *= 2
                if steps > 64:
comfyanonymous's avatar
comfyanonymous committed
269
                    raise e
270
271
272
273
274
275
                print("out of memory error, increasing steps and trying again", steps)
            else:
                raise e

    del q, k, v

276
277
278
279
280
281
282
    r1 = (
        r1.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return r1
283

284
285
286
287
288
289
290
291
BROKEN_XFORMERS = False
try:
    x_vers = xformers.__version__
    #I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error)
    BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23")
except:
    pass

292
def attention_xformers(q, k, v, heads, mask=None):
293
294
    b, _, dim_head = q.shape
    dim_head //= heads
295
296
297
    if BROKEN_XFORMERS:
        if b * heads > 65535:
            return attention_pytorch(q, k, v, heads, mask)
298

299
300
    q, k, v = map(
        lambda t: t.unsqueeze(3)
301
        .reshape(b, -1, heads, dim_head)
302
        .permute(0, 2, 1, 3)
303
        .reshape(b * heads, -1, dim_head)
304
305
306
307
        .contiguous(),
        (q, k, v),
    )

308
309
310
311
312
313
314
    if mask is not None:
        pad = 8 - q.shape[1] % 8
        mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
        mask_out[:, :, :mask.shape[-1]] = mask
        mask = mask_out[:, :, :mask.shape[-1]]

    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
315
316
317

    out = (
        out.unsqueeze(0)
318
        .reshape(b, heads, -1, dim_head)
319
        .permute(0, 2, 1, 3)
320
        .reshape(b, -1, heads * dim_head)
321
322
323
324
325
326
327
328
329
330
331
    )
    return out

def attention_pytorch(q, k, v, heads, mask=None):
    b, _, dim_head = q.shape
    dim_head //= heads
    q, k, v = map(
        lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
        (q, k, v),
    )

332
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
333
334
335
336
337
    out = (
        out.transpose(1, 2).reshape(b, -1, heads * dim_head)
    )
    return out

338

339
optimized_attention = attention_basic
comfyanonymous's avatar
comfyanonymous committed
340

341
342
343
344
345
346
347
348
349
350
351
352
353
if model_management.xformers_enabled():
    print("Using xformers cross attention")
    optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
    print("Using pytorch cross attention")
    optimized_attention = attention_pytorch
else:
    if args.use_split_cross_attention:
        print("Using split optimization for cross attention")
        optimized_attention = attention_split
    else:
        print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
        optimized_attention = attention_sub_quad
comfyanonymous's avatar
comfyanonymous committed
354

355
356
357
optimized_attention_masked = optimized_attention

def optimized_attention_for_device(device, mask=False, small_input=False):
358
359
360
361
362
    if small_input:
        if model_management.pytorch_attention_enabled():
            return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
        else:
            return attention_basic
363
364
365

    if device == torch.device("cpu"):
        return attention_sub_quad
366

367
368
369
370
371
372
    if mask:
        return optimized_attention_masked

    return optimized_attention


373
class CrossAttention(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
374
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=ops):
375
376
377
378
379
380
381
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
382
383
384
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
385

comfyanonymous's avatar
comfyanonymous committed
386
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
387

388
    def forward(self, x, context=None, value=None, mask=None):
389
390
391
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
392
393
394
395
396
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
397

398
399
400
401
        if mask is None:
            out = optimized_attention(q, k, v, self.heads)
        else:
            out = optimized_attention_masked(q, k, v, self.heads, mask)
402
403
        return self.to_out(out)

404

comfyanonymous's avatar
comfyanonymous committed
405
class BasicTransformerBlock(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
406
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
comfyanonymous's avatar
comfyanonymous committed
407
                 disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
408
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
409
410
411
412
413
414
415
416

        self.ff_in = ff_in or inner_dim is not None
        if inner_dim is None:
            inner_dim = dim

        self.is_res = inner_dim == dim

        if self.ff_in:
comfyanonymous's avatar
comfyanonymous committed
417
            self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
418
419
            self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

comfyanonymous's avatar
comfyanonymous committed
420
        self.disable_self_attn = disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
421
        self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
422
                              context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

        if disable_temporal_crossattention:
            if switch_temporal_ca_to_sa:
                raise ValueError
            else:
                self.attn2 = None
        else:
            context_dim_attn2 = None
            if not switch_temporal_ca_to_sa:
                context_dim_attn2 = context_dim

            self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
                                heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
437
            self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
438

439
440
        self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
        self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
441
        self.checkpoint = checkpoint
442
443
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
444
        self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
comfyanonymous's avatar
comfyanonymous committed
445

446
447
    def forward(self, x, context=None, transformer_options={}):
        return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
comfyanonymous's avatar
comfyanonymous committed
448

449
    def _forward(self, x, context=None, transformer_options={}):
450
        extra_options = {}
451
452
        block = transformer_options.get("block", None)
        block_index = transformer_options.get("block_index", 0)
453
454
455
456
457
458
459
460
461
462
        transformer_patches = {}
        transformer_patches_replace = {}

        for k in transformer_options:
            if k == "patches":
                transformer_patches = transformer_options[k]
            elif k == "patches_replace":
                transformer_patches_replace = transformer_options[k]
            else:
                extra_options[k] = transformer_options[k]
463

464
465
466
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head

comfyanonymous's avatar
comfyanonymous committed
467
468
469
470
471
472
        if self.ff_in:
            x_skip = x
            x = self.ff_in(self.norm_in(x))
            if self.is_res:
                x += x_skip

473
        n = self.norm1(x)
474
475
476
477
478
479
480
481
482
483
484
485
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
486
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
487

comfyanonymous's avatar
comfyanonymous committed
488
489
490
491
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
506
        else:
507
            n = self.attn1(n, context=context_attn1, value=value_attn1)
508

509
510
511
512
513
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

514
        x += n
515
516
517
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
518
                x = p(x, extra_options)
519

comfyanonymous's avatar
comfyanonymous committed
520
521
522
523
524
525
526
527
528
        if self.attn2 is not None:
            n = self.norm2(x)
            if self.switch_temporal_ca_to_sa:
                context_attn2 = n
            else:
                context_attn2 = context
            value_attn2 = None
            if "attn2_patch" in transformer_patches:
                patch = transformer_patches["attn2_patch"]
529
                value_attn2 = context_attn2
comfyanonymous's avatar
comfyanonymous committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
                for p in patch:
                    n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)

            attn2_replace_patch = transformer_patches_replace.get("attn2", {})
            block_attn2 = transformer_block
            if block_attn2 not in attn2_replace_patch:
                block_attn2 = block

            if block_attn2 in attn2_replace_patch:
                if value_attn2 is None:
                    value_attn2 = context_attn2
                n = self.attn2.to_q(n)
                context_attn2 = self.attn2.to_k(context_attn2)
                value_attn2 = self.attn2.to_v(value_attn2)
                n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
                n = self.attn2.to_out(n)
            else:
                n = self.attn2(n, context=context_attn2, value=value_attn2)
548

549
550
551
552
553
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

554
        x += n
comfyanonymous's avatar
comfyanonymous committed
555
556
557
558
559
560
        if self.is_res:
            x_skip = x
        x = self.ff(self.norm3(x))
        if self.is_res:
            x += x_skip

comfyanonymous's avatar
comfyanonymous committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
comfyanonymous's avatar
comfyanonymous committed
576
                 use_checkpoint=True, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
577
578
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
579
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
580
581
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
582
        self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
583
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
584
            self.proj_in = operations.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
585
586
587
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
588
                                     padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
589
        else:
comfyanonymous's avatar
comfyanonymous committed
590
            self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
591
592
593

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
comfyanonymous's avatar
comfyanonymous committed
594
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
595
596
597
                for d in range(depth)]
        )
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
598
            self.proj_out = operations.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
599
600
                                                  kernel_size=1,
                                                  stride=1,
601
                                                  padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
602
        else:
comfyanonymous's avatar
comfyanonymous committed
603
            self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
604
605
        self.use_linear = use_linear

606
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
607
608
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
609
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
610
611
612
613
614
615
616
617
618
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
619
            transformer_options["block_index"] = i
620
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
621
622
623
624
625
626
627
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in

comfyanonymous's avatar
comfyanonymous committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

class SpatialVideoTransformer(SpatialTransformer):
    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        use_linear=False,
        context_dim=None,
        use_spatial_context=False,
        timesteps=None,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        time_context_dim=None,
        ff_in=False,
        checkpoint=False,
        time_depth=1,
        disable_self_attn=False,
        disable_temporal_crossattention=False,
        max_time_embed_period: int = 10000,
comfyanonymous's avatar
comfyanonymous committed
650
        dtype=None, device=None, operations=ops
comfyanonymous's avatar
comfyanonymous committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
    ):
        super().__init__(
            in_channels,
            n_heads,
            d_head,
            depth=depth,
            dropout=dropout,
            use_checkpoint=checkpoint,
            context_dim=context_dim,
            use_linear=use_linear,
            disable_self_attn=disable_self_attn,
            dtype=dtype, device=device, operations=operations
        )
        self.time_depth = time_depth
        self.depth = depth
        self.max_time_embed_period = max_time_embed_period

        time_mix_d_head = d_head
        n_time_mix_heads = n_heads

        time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)

        inner_dim = n_heads * d_head
        if use_spatial_context:
            time_context_dim = context_dim

        self.time_stack = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    n_time_mix_heads,
                    time_mix_d_head,
                    dropout=dropout,
                    context_dim=time_context_dim,
                    # timesteps=timesteps,
                    checkpoint=checkpoint,
                    ff_in=ff_in,
                    inner_dim=time_mix_inner_dim,
                    disable_self_attn=disable_self_attn,
                    disable_temporal_crossattention=disable_temporal_crossattention,
                    dtype=dtype, device=device, operations=operations
                )
                for _ in range(self.depth)
            ]
        )

        assert len(self.time_stack) == len(self.transformer_blocks)

        self.use_spatial_context = use_spatial_context
        self.in_channels = in_channels

        time_embed_dim = self.in_channels * 4
        self.time_pos_embed = nn.Sequential(
            operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
        )

        self.time_mixer = AlphaBlender(
            alpha=merge_factor, merge_strategy=merge_strategy
        )

    def forward(
        self,
        x: torch.Tensor,
        context: Optional[torch.Tensor] = None,
        time_context: Optional[torch.Tensor] = None,
        timesteps: Optional[int] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
        transformer_options={}
    ) -> torch.Tensor:
        _, _, h, w = x.shape
        x_in = x
        spatial_context = None
        if exists(context):
            spatial_context = context

        if self.use_spatial_context:
            assert (
                context.ndim == 3
            ), f"n dims of spatial context should be 3 but are {context.ndim}"

            if time_context is None:
                time_context = context
            time_context_first_timestep = time_context[::timesteps]
            time_context = repeat(
                time_context_first_timestep, "b ... -> (b n) ...", n=h * w
            )
        elif time_context is not None and not self.use_spatial_context:
            time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
            if time_context.ndim == 2:
                time_context = rearrange(time_context, "b c -> b 1 c")

        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        if self.use_linear:
            x = self.proj_in(x)

        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
        emb = self.time_pos_embed(t_emb)
        emb = emb[:, None, :]

        for it_, (block, mix_block) in enumerate(
            zip(self.transformer_blocks, self.time_stack)
        ):
            transformer_options["block_index"] = it_
            x = block(
                x,
                context=spatial_context,
                transformer_options=transformer_options,
            )

            x_mix = x
            x_mix = x_mix + emb

            B, S, C = x_mix.shape
            x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
            x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
            x_mix = rearrange(
                x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
            )

            x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)

        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        if not self.use_linear:
            x = self.proj_out(x)
        out = x + x_in
        return out