attention.py 20.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any

comfyanonymous's avatar
comfyanonymous committed
9
from .diffusionmodules.util import checkpoint
comfyanonymous's avatar
comfyanonymous committed
10
11
from .sub_quadratic_attention import efficient_dot_product_attention

12
from comfy import model_management
13

14
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
15
16
17
    import xformers
    import xformers.ops

comfyanonymous's avatar
comfyanonymous committed
18
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.ops

comfyanonymous's avatar
comfyanonymous committed
21
# CrossAttn precision handling
comfyanonymous's avatar
comfyanonymous committed
22
23
24
25
26
if args.dont_upcast_attention:
    print("disabling upcasting of attention")
    _ATTN_PRECISION = "fp16"
else:
    _ATTN_PRECISION = "fp32"
comfyanonymous's avatar
comfyanonymous committed
27

28

comfyanonymous's avatar
comfyanonymous committed
29
30
31
32
33
34
35
36
37
38
39
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
40
    return d
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
56
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
57
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
58
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
66
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
71
            operations.Linear(dim, inner_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
72
            nn.GELU()
comfyanonymous's avatar
comfyanonymous committed
73
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
74
75
76
77

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
comfyanonymous's avatar
comfyanonymous committed
78
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        )

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


94
95
def Normalize(in_channels, dtype=None, device=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
96

97
98
99
100
101
102
103
104
105
106
107
108
def attention_basic(q, k, v, heads, mask=None):
    h = heads
    scale = (q.shape[-1] // heads) ** -0.5
    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

    # force cast to fp32 to avoid overflowing
    if _ATTN_PRECISION =="fp32":
        with torch.autocast(enabled=False, device_type = 'cuda'):
            q, k = q.float(), k.float()
            sim = einsum('b i d, b j d -> b i j', q, k) * scale
    else:
        sim = einsum('b i d, b j d -> b i j', q, k) * scale
comfyanonymous's avatar
comfyanonymous committed
109

110
    del q, k
comfyanonymous's avatar
comfyanonymous committed
111

112
113
114
115
116
    if exists(mask):
        mask = rearrange(mask, 'b ... -> b (...)')
        max_neg_value = -torch.finfo(sim.dtype).max
        mask = repeat(mask, 'b j -> (b h) () j', h=h)
        sim.masked_fill_(~mask, max_neg_value)
comfyanonymous's avatar
comfyanonymous committed
117

118
119
    # attention, what we cannot get enough of
    sim = sim.softmax(dim=-1)
comfyanonymous's avatar
comfyanonymous committed
120

121
122
123
    out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
    return out
comfyanonymous's avatar
comfyanonymous committed
124
125


126
127
128
129
130
131
def attention_sub_quad(query, key, value, heads, mask=None):
    scale = (query.shape[-1] // heads) ** -0.5
    query = query.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
    key_t = key.transpose(1,2).unflatten(1, (heads, -1)).flatten(end_dim=1)
    del key
    value = value.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
comfyanonymous's avatar
comfyanonymous committed
132

133
134
135
136
137
138
139
140
141
    dtype = query.dtype
    upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
    if upcast_attention:
        bytes_per_token = torch.finfo(torch.float32).bits//8
    else:
        bytes_per_token = torch.finfo(query.dtype).bits//8
    batch_x_heads, q_tokens, _ = query.shape
    _, _, k_tokens = key_t.shape
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
comfyanonymous's avatar
comfyanonymous committed
142

143
    mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
comfyanonymous's avatar
comfyanonymous committed
144

145
    chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
comfyanonymous's avatar
comfyanonymous committed
146

147
    kv_chunk_size_min = None
comfyanonymous's avatar
comfyanonymous committed
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    #not sure at all about the math here
    #TODO: tweak this
    if mem_free_total > 8192 * 1024 * 1024 * 1.3:
        query_chunk_size_x = 1024 * 4
    elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
        query_chunk_size_x = 1024 * 2
    else:
        query_chunk_size_x = 1024
    kv_chunk_size_min_x = None
    kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
    if kv_chunk_size_x < 1024:
        kv_chunk_size_x = None

    if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
        # the big matmul fits into our memory limit; do everything in 1 chunk,
        # i.e. send it down the unchunked fast-path
        query_chunk_size = q_tokens
        kv_chunk_size = k_tokens
    else:
        query_chunk_size = query_chunk_size_x
        kv_chunk_size = kv_chunk_size_x
        kv_chunk_size_min = kv_chunk_size_min_x

    hidden_states = efficient_dot_product_attention(
        query,
        key_t,
        value,
        query_chunk_size=query_chunk_size,
        kv_chunk_size=kv_chunk_size,
        kv_chunk_size_min=kv_chunk_size_min,
        use_checkpoint=False,
        upcast_attention=upcast_attention,
    )

    hidden_states = hidden_states.to(dtype)

    hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
    return hidden_states

def attention_split(q, k, v, heads, mask=None):
    scale = (q.shape[-1] // heads) ** -0.5
    h = heads
    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

    mem_free_total = model_management.get_free_memory(q.device)

    gb = 1024 ** 3
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
    modifier = 3 if q.element_size() == 2 else 2.5
    mem_required = tensor_size * modifier
    steps = 1


    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
        #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

    if steps > 64:
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                            f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

    # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
    first_op_done = False
    cleared_cache = False
    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                if _ATTN_PRECISION =="fp32":
                    with torch.autocast(enabled=False, device_type = 'cuda'):
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
comfyanonymous's avatar
comfyanonymous committed
225
                else:
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
                    s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
                first_op_done = True

                s2 = s1.softmax(dim=-1).to(v.dtype)
                del s1

                r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
            if first_op_done == False:
                model_management.soft_empty_cache(True)
                if cleared_cache == False:
                    cleared_cache = True
                    print("out of memory error, emptying cache and trying again")
                    continue
                steps *= 2
                if steps > 64:
comfyanonymous's avatar
comfyanonymous committed
244
                    raise e
245
246
247
248
249
250
251
252
253
254
255
                print("out of memory error, increasing steps and trying again", steps)
            else:
                raise e

    del q, k, v

    r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
    del r1
    return r2

def attention_xformers(q, k, v, heads, mask=None):
256
257
258
    b, _, dim_head = q.shape
    dim_head //= heads

259
260
    q, k, v = map(
        lambda t: t.unsqueeze(3)
261
        .reshape(b, -1, heads, dim_head)
262
        .permute(0, 2, 1, 3)
263
        .reshape(b * heads, -1, dim_head)
264
265
266
267
268
269
270
271
272
273
274
        .contiguous(),
        (q, k, v),
    )

    # actually compute the attention, what we cannot get enough of
    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)

    if exists(mask):
        raise NotImplementedError
    out = (
        out.unsqueeze(0)
275
        .reshape(b, heads, -1, dim_head)
276
        .permute(0, 2, 1, 3)
277
        .reshape(b, -1, heads * dim_head)
278
279
280
281
282
283
284
285
286
287
288
    )
    return out

def attention_pytorch(q, k, v, heads, mask=None):
    b, _, dim_head = q.shape
    dim_head //= heads
    q, k, v = map(
        lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
        (q, k, v),
    )

289
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
290
291
292
293
294
    out = (
        out.transpose(1, 2).reshape(b, -1, heads * dim_head)
    )
    return out

295

296
optimized_attention = attention_basic
297
optimized_attention_masked = attention_basic
comfyanonymous's avatar
comfyanonymous committed
298

299
300
301
302
303
304
305
306
307
308
309
310
311
if model_management.xformers_enabled():
    print("Using xformers cross attention")
    optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
    print("Using pytorch cross attention")
    optimized_attention = attention_pytorch
else:
    if args.use_split_cross_attention:
        print("Using split optimization for cross attention")
        optimized_attention = attention_split
    else:
        print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
        optimized_attention = attention_sub_quad
comfyanonymous's avatar
comfyanonymous committed
312

313
314
315
if model_management.pytorch_attention_enabled():
    optimized_attention_masked = attention_pytorch

316
class CrossAttention(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
317
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
318
319
320
321
322
323
324
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
325
326
327
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
328

comfyanonymous's avatar
comfyanonymous committed
329
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
330

331
    def forward(self, x, context=None, value=None, mask=None):
332
333
334
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
335
336
337
338
339
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
340

341
342
343
344
        if mask is None:
            out = optimized_attention(q, k, v, self.heads)
        else:
            out = optimized_attention_masked(q, k, v, self.heads, mask)
345
346
        return self.to_out(out)

347

comfyanonymous's avatar
comfyanonymous committed
348
349
class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
comfyanonymous's avatar
comfyanonymous committed
350
                 disable_self_attn=False, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
351
352
        super().__init__()
        self.disable_self_attn = disable_self_attn
353
        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
354
355
                              context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
356
        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
357
                              heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
358
359
360
        self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device)
        self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device)
        self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
361
        self.checkpoint = checkpoint
362
363
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
364

365
366
    def forward(self, x, context=None, transformer_options={}):
        return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
comfyanonymous's avatar
comfyanonymous committed
367

368
    def _forward(self, x, context=None, transformer_options={}):
369
        extra_options = {}
370
371
        block = None
        block_index = 0
372
        if "current_index" in transformer_options:
373
374
            extra_options["transformer_index"] = transformer_options["current_index"]
        if "block_index" in transformer_options:
375
376
            block_index = transformer_options["block_index"]
            extra_options["block_index"] = block_index
377
378
        if "original_shape" in transformer_options:
            extra_options["original_shape"] = transformer_options["original_shape"]
379
380
381
        if "block" in transformer_options:
            block = transformer_options["block"]
            extra_options["block"] = block
382
383
        if "cond_or_uncond" in transformer_options:
            extra_options["cond_or_uncond"] = transformer_options["cond_or_uncond"]
384
385
386
387
388
        if "patches" in transformer_options:
            transformer_patches = transformer_options["patches"]
        else:
            transformer_patches = {}

389
390
391
392
393
394
395
396
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head

        if "patches_replace" in transformer_options:
            transformer_patches_replace = transformer_options["patches_replace"]
        else:
            transformer_patches_replace = {}

397
        n = self.norm1(x)
398
399
400
401
402
403
404
405
406
407
408
409
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
410
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
411

comfyanonymous's avatar
comfyanonymous committed
412
413
414
415
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
430
        else:
431
            n = self.attn1(n, context=context_attn1, value=value_attn1)
432

433
434
435
436
437
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

438
        x += n
439
440
441
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
442
                x = p(x, extra_options)
443

444
        n = self.norm2(x)
445
446
447
448
449
450
451

        context_attn2 = context
        value_attn2 = None
        if "attn2_patch" in transformer_patches:
            patch = transformer_patches["attn2_patch"]
            value_attn2 = context_attn2
            for p in patch:
452
                n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
        attn2_replace_patch = transformer_patches_replace.get("attn2", {})
        block_attn2 = transformer_block
        if block_attn2 not in attn2_replace_patch:
            block_attn2 = block

        if block_attn2 in attn2_replace_patch:
            if value_attn2 is None:
                value_attn2 = context_attn2
            n = self.attn2.to_q(n)
            context_attn2 = self.attn2.to_k(context_attn2)
            value_attn2 = self.attn2.to_v(value_attn2)
            n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
            n = self.attn2.to_out(n)
        else:
            n = self.attn2(n, context=context_attn2, value=value_attn2)
469

470
471
472
473
474
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

475
        x += n
comfyanonymous's avatar
comfyanonymous committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
comfyanonymous's avatar
comfyanonymous committed
492
                 use_checkpoint=True, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
493
494
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
495
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
496
497
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
498
        self.norm = Normalize(in_channels, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
499
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
500
            self.proj_in = operations.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
501
502
503
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
504
                                     padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
505
        else:
comfyanonymous's avatar
comfyanonymous committed
506
            self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
507
508
509

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
comfyanonymous's avatar
comfyanonymous committed
510
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
511
512
513
                for d in range(depth)]
        )
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
514
            self.proj_out = operations.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
515
516
                                                  kernel_size=1,
                                                  stride=1,
517
                                                  padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
518
        else:
comfyanonymous's avatar
comfyanonymous committed
519
            self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
520
521
        self.use_linear = use_linear

522
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
523
524
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
525
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
526
527
528
529
530
531
532
533
534
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
535
            transformer_options["block_index"] = i
536
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
537
538
539
540
541
542
543
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in