attention.py 20.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any

comfyanonymous's avatar
comfyanonymous committed
9
from .diffusionmodules.util import checkpoint
comfyanonymous's avatar
comfyanonymous committed
10
11
from .sub_quadratic_attention import efficient_dot_product_attention

12
from comfy import model_management
13

14
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
15
16
17
    import xformers
    import xformers.ops

comfyanonymous's avatar
comfyanonymous committed
18
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.ops

comfyanonymous's avatar
comfyanonymous committed
21
# CrossAttn precision handling
comfyanonymous's avatar
comfyanonymous committed
22
23
24
25
26
if args.dont_upcast_attention:
    print("disabling upcasting of attention")
    _ATTN_PRECISION = "fp16"
else:
    _ATTN_PRECISION = "fp32"
comfyanonymous's avatar
comfyanonymous committed
27

28

comfyanonymous's avatar
comfyanonymous committed
29
30
31
32
33
34
35
36
37
38
39
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
40
    return d
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
56
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
57
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
58
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
66
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
71
            operations.Linear(dim, inner_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
72
            nn.GELU()
comfyanonymous's avatar
comfyanonymous committed
73
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
74
75
76
77

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
comfyanonymous's avatar
comfyanonymous committed
78
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        )

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


94
95
def Normalize(in_channels, dtype=None, device=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
96

97
def attention_basic(q, k, v, heads, mask=None):
98
99
100
101
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

102
    h = heads
103
104
105
106
107
108
109
110
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
111
112
113
114
115
116
117
118

    # force cast to fp32 to avoid overflowing
    if _ATTN_PRECISION =="fp32":
        with torch.autocast(enabled=False, device_type = 'cuda'):
            q, k = q.float(), k.float()
            sim = einsum('b i d, b j d -> b i j', q, k) * scale
    else:
        sim = einsum('b i d, b j d -> b i j', q, k) * scale
comfyanonymous's avatar
comfyanonymous committed
119

120
    del q, k
comfyanonymous's avatar
comfyanonymous committed
121

122
123
124
125
126
    if exists(mask):
        mask = rearrange(mask, 'b ... -> b (...)')
        max_neg_value = -torch.finfo(sim.dtype).max
        mask = repeat(mask, 'b j -> (b h) () j', h=h)
        sim.masked_fill_(~mask, max_neg_value)
comfyanonymous's avatar
comfyanonymous committed
127

128
129
    # attention, what we cannot get enough of
    sim = sim.softmax(dim=-1)
comfyanonymous's avatar
comfyanonymous committed
130

131
    out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
132
133
134
135
136
137
    out = (
        out.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
138
    return out
comfyanonymous's avatar
comfyanonymous committed
139
140


141
def attention_sub_quad(query, key, value, heads, mask=None):
142
143
144
145
146
147
148
149
    b, _, dim_head = query.shape
    dim_head //= heads

    scale = dim_head ** -0.5
    query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
    value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)

    key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
comfyanonymous's avatar
comfyanonymous committed
150

151
152
153
154
155
156
157
    dtype = query.dtype
    upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
    if upcast_attention:
        bytes_per_token = torch.finfo(torch.float32).bits//8
    else:
        bytes_per_token = torch.finfo(query.dtype).bits//8
    batch_x_heads, q_tokens, _ = query.shape
158
    _, _, k_tokens = key.shape
159
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
comfyanonymous's avatar
comfyanonymous committed
160

161
    mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
comfyanonymous's avatar
comfyanonymous committed
162

163
    chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
comfyanonymous's avatar
comfyanonymous committed
164

165
    kv_chunk_size_min = None
comfyanonymous's avatar
comfyanonymous committed
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    #not sure at all about the math here
    #TODO: tweak this
    if mem_free_total > 8192 * 1024 * 1024 * 1.3:
        query_chunk_size_x = 1024 * 4
    elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
        query_chunk_size_x = 1024 * 2
    else:
        query_chunk_size_x = 1024
    kv_chunk_size_min_x = None
    kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
    if kv_chunk_size_x < 1024:
        kv_chunk_size_x = None

    if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
        # the big matmul fits into our memory limit; do everything in 1 chunk,
        # i.e. send it down the unchunked fast-path
        query_chunk_size = q_tokens
        kv_chunk_size = k_tokens
    else:
        query_chunk_size = query_chunk_size_x
        kv_chunk_size = kv_chunk_size_x
        kv_chunk_size_min = kv_chunk_size_min_x

    hidden_states = efficient_dot_product_attention(
        query,
192
        key,
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        value,
        query_chunk_size=query_chunk_size,
        kv_chunk_size=kv_chunk_size,
        kv_chunk_size_min=kv_chunk_size_min,
        use_checkpoint=False,
        upcast_attention=upcast_attention,
    )

    hidden_states = hidden_states.to(dtype)

    hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
    return hidden_states

def attention_split(q, k, v, heads, mask=None):
207
208
209
210
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

211
    h = heads
212
213
214
215
216
217
218
219
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

    mem_free_total = model_management.get_free_memory(q.device)

    gb = 1024 ** 3
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
    modifier = 3 if q.element_size() == 2 else 2.5
    mem_required = tensor_size * modifier
    steps = 1


    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
        #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

    if steps > 64:
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                            f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

    # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
    first_op_done = False
    cleared_cache = False
    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
                if _ATTN_PRECISION =="fp32":
                    with torch.autocast(enabled=False, device_type = 'cuda'):
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
comfyanonymous's avatar
comfyanonymous committed
253
                else:
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
                    s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
                first_op_done = True

                s2 = s1.softmax(dim=-1).to(v.dtype)
                del s1

                r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
            if first_op_done == False:
                model_management.soft_empty_cache(True)
                if cleared_cache == False:
                    cleared_cache = True
                    print("out of memory error, emptying cache and trying again")
                    continue
                steps *= 2
                if steps > 64:
comfyanonymous's avatar
comfyanonymous committed
272
                    raise e
273
274
275
276
277
278
                print("out of memory error, increasing steps and trying again", steps)
            else:
                raise e

    del q, k, v

279
280
281
282
283
284
285
    r1 = (
        r1.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return r1
286
287

def attention_xformers(q, k, v, heads, mask=None):
288
289
290
    b, _, dim_head = q.shape
    dim_head //= heads

291
292
    q, k, v = map(
        lambda t: t.unsqueeze(3)
293
        .reshape(b, -1, heads, dim_head)
294
        .permute(0, 2, 1, 3)
295
        .reshape(b * heads, -1, dim_head)
296
297
298
299
300
301
302
303
304
305
306
        .contiguous(),
        (q, k, v),
    )

    # actually compute the attention, what we cannot get enough of
    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)

    if exists(mask):
        raise NotImplementedError
    out = (
        out.unsqueeze(0)
307
        .reshape(b, heads, -1, dim_head)
308
        .permute(0, 2, 1, 3)
309
        .reshape(b, -1, heads * dim_head)
310
311
312
313
314
315
316
317
318
319
320
    )
    return out

def attention_pytorch(q, k, v, heads, mask=None):
    b, _, dim_head = q.shape
    dim_head //= heads
    q, k, v = map(
        lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
        (q, k, v),
    )

321
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
322
323
324
325
326
    out = (
        out.transpose(1, 2).reshape(b, -1, heads * dim_head)
    )
    return out

327

328
optimized_attention = attention_basic
329
optimized_attention_masked = attention_basic
comfyanonymous's avatar
comfyanonymous committed
330

331
332
333
334
335
336
337
338
339
340
341
342
343
if model_management.xformers_enabled():
    print("Using xformers cross attention")
    optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
    print("Using pytorch cross attention")
    optimized_attention = attention_pytorch
else:
    if args.use_split_cross_attention:
        print("Using split optimization for cross attention")
        optimized_attention = attention_split
    else:
        print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
        optimized_attention = attention_sub_quad
comfyanonymous's avatar
comfyanonymous committed
344

345
346
347
if model_management.pytorch_attention_enabled():
    optimized_attention_masked = attention_pytorch

348
class CrossAttention(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
349
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
350
351
352
353
354
355
356
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
357
358
359
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
360

comfyanonymous's avatar
comfyanonymous committed
361
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
362

363
    def forward(self, x, context=None, value=None, mask=None):
364
365
366
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
367
368
369
370
371
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
372

373
374
375
376
        if mask is None:
            out = optimized_attention(q, k, v, self.heads)
        else:
            out = optimized_attention_masked(q, k, v, self.heads, mask)
377
378
        return self.to_out(out)

379

comfyanonymous's avatar
comfyanonymous committed
380
381
class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
comfyanonymous's avatar
comfyanonymous committed
382
                 disable_self_attn=False, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
383
384
        super().__init__()
        self.disable_self_attn = disable_self_attn
385
        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
386
387
                              context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
388
        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
389
                              heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
390
391
392
        self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device)
        self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device)
        self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
393
        self.checkpoint = checkpoint
394
395
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
396

397
398
    def forward(self, x, context=None, transformer_options={}):
        return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
comfyanonymous's avatar
comfyanonymous committed
399

400
    def _forward(self, x, context=None, transformer_options={}):
401
        extra_options = {}
402
403
        block = None
        block_index = 0
404
        if "current_index" in transformer_options:
405
406
            extra_options["transformer_index"] = transformer_options["current_index"]
        if "block_index" in transformer_options:
407
408
            block_index = transformer_options["block_index"]
            extra_options["block_index"] = block_index
409
410
        if "original_shape" in transformer_options:
            extra_options["original_shape"] = transformer_options["original_shape"]
411
412
413
        if "block" in transformer_options:
            block = transformer_options["block"]
            extra_options["block"] = block
414
415
        if "cond_or_uncond" in transformer_options:
            extra_options["cond_or_uncond"] = transformer_options["cond_or_uncond"]
416
417
418
419
420
        if "patches" in transformer_options:
            transformer_patches = transformer_options["patches"]
        else:
            transformer_patches = {}

421
422
423
424
425
426
427
428
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head

        if "patches_replace" in transformer_options:
            transformer_patches_replace = transformer_options["patches_replace"]
        else:
            transformer_patches_replace = {}

429
        n = self.norm1(x)
430
431
432
433
434
435
436
437
438
439
440
441
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
442
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
443

comfyanonymous's avatar
comfyanonymous committed
444
445
446
447
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
462
        else:
463
            n = self.attn1(n, context=context_attn1, value=value_attn1)
464

465
466
467
468
469
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

470
        x += n
471
472
473
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
474
                x = p(x, extra_options)
475

476
        n = self.norm2(x)
477
478
479
480
481
482
483

        context_attn2 = context
        value_attn2 = None
        if "attn2_patch" in transformer_patches:
            patch = transformer_patches["attn2_patch"]
            value_attn2 = context_attn2
            for p in patch:
484
                n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
        attn2_replace_patch = transformer_patches_replace.get("attn2", {})
        block_attn2 = transformer_block
        if block_attn2 not in attn2_replace_patch:
            block_attn2 = block

        if block_attn2 in attn2_replace_patch:
            if value_attn2 is None:
                value_attn2 = context_attn2
            n = self.attn2.to_q(n)
            context_attn2 = self.attn2.to_k(context_attn2)
            value_attn2 = self.attn2.to_v(value_attn2)
            n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
            n = self.attn2.to_out(n)
        else:
            n = self.attn2(n, context=context_attn2, value=value_attn2)
501

502
503
504
505
506
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

507
        x += n
comfyanonymous's avatar
comfyanonymous committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
comfyanonymous's avatar
comfyanonymous committed
524
                 use_checkpoint=True, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
525
526
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
527
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
528
529
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
530
        self.norm = Normalize(in_channels, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
531
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
532
            self.proj_in = operations.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
533
534
535
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
536
                                     padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
537
        else:
comfyanonymous's avatar
comfyanonymous committed
538
            self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
539
540
541

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
comfyanonymous's avatar
comfyanonymous committed
542
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
543
544
545
                for d in range(depth)]
        )
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
546
            self.proj_out = operations.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
547
548
                                                  kernel_size=1,
                                                  stride=1,
549
                                                  padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
550
        else:
comfyanonymous's avatar
comfyanonymous committed
551
            self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
552
553
        self.use_linear = use_linear

554
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
555
556
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
557
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
558
559
560
561
562
563
564
565
566
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
567
            transformer_options["block_index"] = i
568
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
569
570
571
572
573
574
575
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in