attention.py 29 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
comfyanonymous's avatar
comfyanonymous committed
6
from typing import Optional
7
import logging
comfyanonymous's avatar
comfyanonymous committed
8

comfyanonymous's avatar
comfyanonymous committed
9
from .diffusionmodules.util import AlphaBlender, timestep_embedding
comfyanonymous's avatar
comfyanonymous committed
10
11
from .sub_quadratic_attention import efficient_dot_product_attention

12
from comfy import model_management
13

14
if model_management.xformers_enabled():
comfyanonymous's avatar
comfyanonymous committed
15
16
17
    import xformers
    import xformers.ops

comfyanonymous's avatar
comfyanonymous committed
18
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
19
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
20
ops = comfy.ops.disable_weight_init
comfyanonymous's avatar
comfyanonymous committed
21

22
FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype()
23
24
25
26

def get_attn_precision(attn_precision):
    if args.dont_upcast_attention:
        return None
27
28
    if FORCE_UPCAST_ATTENTION_DTYPE is not None:
        return FORCE_UPCAST_ATTENTION_DTYPE
29
30
    return attn_precision

comfyanonymous's avatar
comfyanonymous committed
31
32
33
34
35
36
37
38
39
40
41
def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
42
    return d
comfyanonymous's avatar
comfyanonymous committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
58
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
59
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
60
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
61
62
63
64
65
66
67

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
68
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
73
            operations.Linear(dim, inner_dim, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
74
            nn.GELU()
comfyanonymous's avatar
comfyanonymous committed
75
        ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
76
77
78
79

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
comfyanonymous's avatar
comfyanonymous committed
80
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
81
82
83
84
85
        )

    def forward(self, x):
        return self.net(x)

86
87
def Normalize(in_channels, dtype=None, device=None):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
88

89
def attention_basic(q, k, v, heads, mask=None, attn_precision=None):
90
91
    attn_precision = get_attn_precision(attn_precision)

92
93
94
95
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

96
    h = heads
97
98
99
100
101
102
103
104
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
105
106

    # force cast to fp32 to avoid overflowing
107
    if attn_precision == torch.float32:
comfyanonymous's avatar
comfyanonymous committed
108
        sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
109
110
    else:
        sim = einsum('b i d, b j d -> b i j', q, k) * scale
comfyanonymous's avatar
comfyanonymous committed
111

112
    del q, k
comfyanonymous's avatar
comfyanonymous committed
113

114
    if exists(mask):
115
116
117
118
119
120
        if mask.dtype == torch.bool:
            mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h=h)
            sim.masked_fill_(~mask, max_neg_value)
        else:
121
122
123
124
            if len(mask.shape) == 2:
                bs = 1
            else:
                bs = mask.shape[0]
125
            mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
126
            sim.add_(mask)
comfyanonymous's avatar
comfyanonymous committed
127

128
129
    # attention, what we cannot get enough of
    sim = sim.softmax(dim=-1)
comfyanonymous's avatar
comfyanonymous committed
130

131
    out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
132
133
134
135
136
137
    out = (
        out.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
138
    return out
comfyanonymous's avatar
comfyanonymous committed
139
140


141
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None):
142
143
    attn_precision = get_attn_precision(attn_precision)

144
145
146
147
148
149
150
151
    b, _, dim_head = query.shape
    dim_head //= heads

    scale = dim_head ** -0.5
    query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
    value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)

    key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
comfyanonymous's avatar
comfyanonymous committed
152

153
    dtype = query.dtype
154
    upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32
155
156
157
158
159
    if upcast_attention:
        bytes_per_token = torch.finfo(torch.float32).bits//8
    else:
        bytes_per_token = torch.finfo(query.dtype).bits//8
    batch_x_heads, q_tokens, _ = query.shape
160
    _, _, k_tokens = key.shape
161
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
comfyanonymous's avatar
comfyanonymous committed
162

163
    mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
comfyanonymous's avatar
comfyanonymous committed
164

165
    kv_chunk_size_min = None
166
167
168
169
170
171
172
173
174
175
176
177
    kv_chunk_size = None
    query_chunk_size = None

    for x in [4096, 2048, 1024, 512, 256]:
        count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
        if count >= k_tokens:
            kv_chunk_size = k_tokens
            query_chunk_size = x
            break

    if query_chunk_size is None:
        query_chunk_size = 512
178

179
    if mask is not None:
180
181
182
183
        if len(mask.shape) == 2:
            bs = 1
        else:
            bs = mask.shape[0]
184
        mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
185

186
187
    hidden_states = efficient_dot_product_attention(
        query,
188
        key,
189
190
191
192
193
194
        value,
        query_chunk_size=query_chunk_size,
        kv_chunk_size=kv_chunk_size,
        kv_chunk_size_min=kv_chunk_size_min,
        use_checkpoint=False,
        upcast_attention=upcast_attention,
195
        mask=mask,
196
197
198
199
200
201
202
    )

    hidden_states = hidden_states.to(dtype)

    hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
    return hidden_states

203
def attention_split(q, k, v, heads, mask=None, attn_precision=None):
204
205
    attn_precision = get_attn_precision(attn_precision)

206
207
208
209
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

210
    h = heads
211
212
213
214
215
216
217
218
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )
219
220
221
222
223

    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

    mem_free_total = model_management.get_free_memory(q.device)

224
    if attn_precision == torch.float32:
225
        element_size = 4
226
        upcast = True
227
228
    else:
        element_size = q.element_size()
229
        upcast = False
230

231
    gb = 1024 ** 3
232
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
233
    modifier = 3
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    mem_required = tensor_size * modifier
    steps = 1


    if mem_required > mem_free_total:
        steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
        #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")

    if steps > 64:
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                            f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')

248
    if mask is not None:
249
250
251
252
        if len(mask.shape) == 2:
            bs = 1
        else:
            bs = mask.shape[0]
253
        mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
254

255
256
257
258
259
260
261
262
    # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
    first_op_done = False
    cleared_cache = False
    while True:
        try:
            slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
            for i in range(0, q.shape[1], slice_size):
                end = i + slice_size
263
                if upcast:
264
265
                    with torch.autocast(enabled=False, device_type = 'cuda'):
                        s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
comfyanonymous's avatar
comfyanonymous committed
266
                else:
267
268
                    s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale

269
270
271
272
273
274
                if mask is not None:
                    if len(mask.shape) == 2:
                        s1 += mask[i:end]
                    else:
                        s1 += mask[:, i:end]

275
276
                s2 = s1.softmax(dim=-1).to(v.dtype)
                del s1
277
                first_op_done = True
278
279
280
281
282
283
284
285
286

                r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
                del s2
            break
        except model_management.OOM_EXCEPTION as e:
            if first_op_done == False:
                model_management.soft_empty_cache(True)
                if cleared_cache == False:
                    cleared_cache = True
287
                    logging.warning("out of memory error, emptying cache and trying again")
288
289
290
                    continue
                steps *= 2
                if steps > 64:
comfyanonymous's avatar
comfyanonymous committed
291
                    raise e
292
                logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
293
294
295
296
297
            else:
                raise e

    del q, k, v

298
299
300
301
302
303
304
    r1 = (
        r1.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return r1
305

306
307
308
BROKEN_XFORMERS = False
try:
    x_vers = xformers.__version__
comfyanonymous's avatar
comfyanonymous committed
309
310
    # XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error)
    BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
311
312
313
except:
    pass

314
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None):
315
316
    b, _, dim_head = q.shape
    dim_head //= heads
317
318
319

    disabled_xformers = False

320
321
    if BROKEN_XFORMERS:
        if b * heads > 65535:
322
323
324
325
326
327
328
329
            disabled_xformers = True

    if not disabled_xformers:
        if torch.jit.is_tracing() or torch.jit.is_scripting():
            disabled_xformers = True

    if disabled_xformers:
        return attention_pytorch(q, k, v, heads, mask)
330

331
    q, k, v = map(
comfyanonymous's avatar
comfyanonymous committed
332
        lambda t: t.reshape(b, -1, heads, dim_head),
333
334
335
        (q, k, v),
    )

336
337
338
339
340
341
342
    if mask is not None:
        pad = 8 - q.shape[1] % 8
        mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
        mask_out[:, :, :mask.shape[-1]] = mask
        mask = mask_out[:, :, :mask.shape[-1]]

    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
343
344

    out = (
comfyanonymous's avatar
comfyanonymous committed
345
        out.reshape(b, -1, heads * dim_head)
346
347
348
    )
    return out

349
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None):
350
351
352
353
354
355
356
    b, _, dim_head = q.shape
    dim_head //= heads
    q, k, v = map(
        lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
        (q, k, v),
    )

357
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
358
359
360
361
362
    out = (
        out.transpose(1, 2).reshape(b, -1, heads * dim_head)
    )
    return out

363

364
optimized_attention = attention_basic
comfyanonymous's avatar
comfyanonymous committed
365

366
if model_management.xformers_enabled():
367
    logging.info("Using xformers cross attention")
368
369
    optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
370
    logging.info("Using pytorch cross attention")
371
372
373
    optimized_attention = attention_pytorch
else:
    if args.use_split_cross_attention:
374
        logging.info("Using split optimization for cross attention")
375
376
        optimized_attention = attention_split
    else:
377
        logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
378
        optimized_attention = attention_sub_quad
comfyanonymous's avatar
comfyanonymous committed
379

380
381
382
optimized_attention_masked = optimized_attention

def optimized_attention_for_device(device, mask=False, small_input=False):
383
384
385
386
387
    if small_input:
        if model_management.pytorch_attention_enabled():
            return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
        else:
            return attention_basic
388
389
390

    if device == torch.device("cpu"):
        return attention_sub_quad
391

392
393
394
395
396
397
    if mask:
        return optimized_attention_masked

    return optimized_attention


398
class CrossAttention(nn.Module):
399
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=ops):
400
401
402
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)
403
        self.attn_precision = attn_precision
404
405
406
407

        self.heads = heads
        self.dim_head = dim_head

comfyanonymous's avatar
comfyanonymous committed
408
409
410
        self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
411

comfyanonymous's avatar
comfyanonymous committed
412
        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
413

414
    def forward(self, x, context=None, value=None, mask=None):
415
416
417
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
418
419
420
421
422
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
423

424
        if mask is None:
425
            out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
426
        else:
427
            out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
428
429
        return self.to_out(out)

430

comfyanonymous's avatar
comfyanonymous committed
431
class BasicTransformerBlock(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
432
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
433
                 disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, attn_precision=None, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
434
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
435
436
437
438
439
440

        self.ff_in = ff_in or inner_dim is not None
        if inner_dim is None:
            inner_dim = dim

        self.is_res = inner_dim == dim
comfyanonymous's avatar
comfyanonymous committed
441
        self.attn_precision = attn_precision
comfyanonymous's avatar
comfyanonymous committed
442
443

        if self.ff_in:
comfyanonymous's avatar
comfyanonymous committed
444
            self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
445
446
            self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

comfyanonymous's avatar
comfyanonymous committed
447
        self.disable_self_attn = disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
448
        self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
449
                              context_dim=context_dim if self.disable_self_attn else None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
comfyanonymous's avatar
comfyanonymous committed
450
451
452
453
454
455
456
457
458
459
460
461
462
        self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)

        if disable_temporal_crossattention:
            if switch_temporal_ca_to_sa:
                raise ValueError
            else:
                self.attn2 = None
        else:
            context_dim_attn2 = None
            if not switch_temporal_ca_to_sa:
                context_dim_attn2 = context_dim

            self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
comfyanonymous's avatar
comfyanonymous committed
463
                                heads=n_heads, dim_head=d_head, dropout=dropout, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
464
            self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
465

466
467
        self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
        self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
468
469
        self.n_heads = n_heads
        self.d_head = d_head
comfyanonymous's avatar
comfyanonymous committed
470
        self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
comfyanonymous's avatar
comfyanonymous committed
471

472
    def forward(self, x, context=None, transformer_options={}):
473
        extra_options = {}
474
475
        block = transformer_options.get("block", None)
        block_index = transformer_options.get("block_index", 0)
476
477
478
479
480
481
482
483
484
485
        transformer_patches = {}
        transformer_patches_replace = {}

        for k in transformer_options:
            if k == "patches":
                transformer_patches = transformer_options[k]
            elif k == "patches_replace":
                transformer_patches_replace = transformer_options[k]
            else:
                extra_options[k] = transformer_options[k]
486

487
488
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head
comfyanonymous's avatar
comfyanonymous committed
489
        extra_options["attn_precision"] = self.attn_precision
490

comfyanonymous's avatar
comfyanonymous committed
491
492
493
494
495
496
        if self.ff_in:
            x_skip = x
            x = self.ff_in(self.norm_in(x))
            if self.is_res:
                x += x_skip

497
        n = self.norm1(x)
498
499
500
501
502
503
504
505
506
507
508
509
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None

        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
510
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
511

comfyanonymous's avatar
comfyanonymous committed
512
513
514
515
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block

        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
530
        else:
531
            n = self.attn1(n, context=context_attn1, value=value_attn1)
532

533
534
535
536
537
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)

538
        x += n
539
540
541
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
542
                x = p(x, extra_options)
543

comfyanonymous's avatar
comfyanonymous committed
544
545
546
547
548
549
550
551
552
        if self.attn2 is not None:
            n = self.norm2(x)
            if self.switch_temporal_ca_to_sa:
                context_attn2 = n
            else:
                context_attn2 = context
            value_attn2 = None
            if "attn2_patch" in transformer_patches:
                patch = transformer_patches["attn2_patch"]
553
                value_attn2 = context_attn2
comfyanonymous's avatar
comfyanonymous committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
                for p in patch:
                    n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)

            attn2_replace_patch = transformer_patches_replace.get("attn2", {})
            block_attn2 = transformer_block
            if block_attn2 not in attn2_replace_patch:
                block_attn2 = block

            if block_attn2 in attn2_replace_patch:
                if value_attn2 is None:
                    value_attn2 = context_attn2
                n = self.attn2.to_q(n)
                context_attn2 = self.attn2.to_k(context_attn2)
                value_attn2 = self.attn2.to_v(value_attn2)
                n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
                n = self.attn2.to_out(n)
            else:
                n = self.attn2(n, context=context_attn2, value=value_attn2)
572

573
574
575
576
577
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)

578
        x += n
comfyanonymous's avatar
comfyanonymous committed
579
580
581
582
583
584
        if self.is_res:
            x_skip = x
        x = self.ff(self.norm3(x))
        if self.is_res:
            x += x_skip

comfyanonymous's avatar
comfyanonymous committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
600
                 use_checkpoint=True, attn_precision=None, dtype=None, device=None, operations=ops):
comfyanonymous's avatar
comfyanonymous committed
601
602
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
603
            context_dim = [context_dim] * depth
comfyanonymous's avatar
comfyanonymous committed
604
605
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
606
        self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
607
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
608
            self.proj_in = operations.Conv2d(in_channels,
comfyanonymous's avatar
comfyanonymous committed
609
610
611
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
612
                                     padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
613
        else:
comfyanonymous's avatar
comfyanonymous committed
614
            self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
615
616
617

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
618
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
619
620
621
                for d in range(depth)]
        )
        if not use_linear:
comfyanonymous's avatar
comfyanonymous committed
622
            self.proj_out = operations.Conv2d(inner_dim,in_channels,
comfyanonymous's avatar
comfyanonymous committed
623
624
                                                  kernel_size=1,
                                                  stride=1,
625
                                                  padding=0, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
626
        else:
comfyanonymous's avatar
comfyanonymous committed
627
            self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
628
629
        self.use_linear = use_linear

630
    def forward(self, x, context=None, transformer_options={}):
comfyanonymous's avatar
comfyanonymous committed
631
632
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
633
            context = [context] * len(self.transformer_blocks)
comfyanonymous's avatar
comfyanonymous committed
634
635
636
637
638
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
comfyanonymous's avatar
comfyanonymous committed
639
        x = x.movedim(1, 3).flatten(1, 2).contiguous()
comfyanonymous's avatar
comfyanonymous committed
640
641
642
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
643
            transformer_options["block_index"] = i
644
            x = block(x, context=context[i], transformer_options=transformer_options)
comfyanonymous's avatar
comfyanonymous committed
645
646
        if self.use_linear:
            x = self.proj_out(x)
comfyanonymous's avatar
comfyanonymous committed
647
        x = x.reshape(x.shape[0], h, w, x.shape[-1]).movedim(3, 1).contiguous()
comfyanonymous's avatar
comfyanonymous committed
648
649
650
651
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in

comfyanonymous's avatar
comfyanonymous committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673

class SpatialVideoTransformer(SpatialTransformer):
    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        use_linear=False,
        context_dim=None,
        use_spatial_context=False,
        timesteps=None,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        time_context_dim=None,
        ff_in=False,
        checkpoint=False,
        time_depth=1,
        disable_self_attn=False,
        disable_temporal_crossattention=False,
        max_time_embed_period: int = 10000,
674
        attn_precision=None,
comfyanonymous's avatar
comfyanonymous committed
675
        dtype=None, device=None, operations=ops
comfyanonymous's avatar
comfyanonymous committed
676
677
678
679
680
681
682
683
684
685
686
    ):
        super().__init__(
            in_channels,
            n_heads,
            d_head,
            depth=depth,
            dropout=dropout,
            use_checkpoint=checkpoint,
            context_dim=context_dim,
            use_linear=use_linear,
            disable_self_attn=disable_self_attn,
687
            attn_precision=attn_precision,
comfyanonymous's avatar
comfyanonymous committed
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
            dtype=dtype, device=device, operations=operations
        )
        self.time_depth = time_depth
        self.depth = depth
        self.max_time_embed_period = max_time_embed_period

        time_mix_d_head = d_head
        n_time_mix_heads = n_heads

        time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)

        inner_dim = n_heads * d_head
        if use_spatial_context:
            time_context_dim = context_dim

        self.time_stack = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    n_time_mix_heads,
                    time_mix_d_head,
                    dropout=dropout,
                    context_dim=time_context_dim,
                    # timesteps=timesteps,
                    checkpoint=checkpoint,
                    ff_in=ff_in,
                    inner_dim=time_mix_inner_dim,
                    disable_self_attn=disable_self_attn,
                    disable_temporal_crossattention=disable_temporal_crossattention,
717
                    attn_precision=attn_precision,
comfyanonymous's avatar
comfyanonymous committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
                    dtype=dtype, device=device, operations=operations
                )
                for _ in range(self.depth)
            ]
        )

        assert len(self.time_stack) == len(self.transformer_blocks)

        self.use_spatial_context = use_spatial_context
        self.in_channels = in_channels

        time_embed_dim = self.in_channels * 4
        self.time_pos_embed = nn.Sequential(
            operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
        )

        self.time_mixer = AlphaBlender(
            alpha=merge_factor, merge_strategy=merge_strategy
        )

    def forward(
        self,
        x: torch.Tensor,
        context: Optional[torch.Tensor] = None,
        time_context: Optional[torch.Tensor] = None,
        timesteps: Optional[int] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
        transformer_options={}
    ) -> torch.Tensor:
        _, _, h, w = x.shape
        x_in = x
        spatial_context = None
        if exists(context):
            spatial_context = context

        if self.use_spatial_context:
            assert (
                context.ndim == 3
            ), f"n dims of spatial context should be 3 but are {context.ndim}"

            if time_context is None:
                time_context = context
            time_context_first_timestep = time_context[::timesteps]
            time_context = repeat(
                time_context_first_timestep, "b ... -> (b n) ...", n=h * w
            )
        elif time_context is not None and not self.use_spatial_context:
            time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
            if time_context.ndim == 2:
                time_context = rearrange(time_context, "b c -> b 1 c")

        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        if self.use_linear:
            x = self.proj_in(x)

        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
        emb = self.time_pos_embed(t_emb)
        emb = emb[:, None, :]

        for it_, (block, mix_block) in enumerate(
            zip(self.transformer_blocks, self.time_stack)
        ):
            transformer_options["block_index"] = it_
            x = block(
                x,
                context=spatial_context,
                transformer_options=transformer_options,
            )

            x_mix = x
            x_mix = x_mix + emb

            B, S, C = x_mix.shape
            x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
            x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
            x_mix = rearrange(
                x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
            )

            x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)

        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        if not self.use_linear:
            x = self.proj_out(x)
        out = x + x_in
        return out