nodes.py 35.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
8
import traceback
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

comfyanonymous's avatar
comfyanonymous committed
14
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18


import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.utils

21
22
import comfy_extras.clip_vision

23
import model_management
24
import importlib
comfyanonymous's avatar
comfyanonymous committed
25

comfyanonymous's avatar
comfyanonymous committed
26
27
supported_ckpt_extensions = ['.ckpt', '.pth']
supported_pt_extensions = ['.ckpt', '.pt', '.bin', '.pth']
comfyanonymous's avatar
comfyanonymous committed
28
29
30
try:
    import safetensors.torch
    supported_ckpt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
31
    supported_pt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
32
33
34
except:
    print("Could not import safetensors, safetensors support disabled.")

35
36
37
38
def recursive_search(directory):  
    result = []
    for root, subdir, file in os.walk(directory, followlinks=True):
        for filepath in file:
39
40
            #we os.path,join directory with a blank string to generate a path separator at the end.
            result.append(os.path.join(root, filepath).replace(os.path.join(directory,''),'')) 
41
42
    return result

comfyanonymous's avatar
comfyanonymous committed
43
44
45
def filter_files_extensions(files, extensions):
    return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))

46
47
48
49

def before_node_execution():
    model_management.throw_exception_if_processing_interrupted()

50
51
def interrupt_processing(value=True):
    model_management.interrupt_current_processing(value)
52

comfyanonymous's avatar
comfyanonymous committed
53
54
55
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
56
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
57
58
59
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

60
61
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
62
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
67
68
69
70
71
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

72
73
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

90
91
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
92
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
97
98
99
100
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
101
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
107
108
109
110
111
112

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

113
114
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
115
    def decode(self, vae, samples):
116
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
137
138
139
140
141
142
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

143
144
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
145
    def encode(self, vae, pixels):
146
147
148
149
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
150
151
152
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
169
170
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

171
172
173
174
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

175
        #grow mask by a few pixels to keep things seamless in latent space
176
        kernel_tensor = torch.ones((1, 1, 6, 6))
177
178
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
179
180
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
181
            pixels[:,:,:,i] *= m
182
183
184
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

185
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
186
187
188
189
190

class CheckpointLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    config_dir = os.path.join(models_dir, "configs")
    ckpt_dir = os.path.join(models_dir, "checkpoints")
191
    embedding_directory = os.path.join(models_dir, "embeddings")
comfyanonymous's avatar
comfyanonymous committed
192
193
194

    @classmethod
    def INPUT_TYPES(s):
195
196
        return {"required": { "config_name": (filter_files_extensions(recursive_search(s.config_dir), '.yaml'), ),
                              "ckpt_name": (filter_files_extensions(recursive_search(s.ckpt_dir), supported_ckpt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
197
198
199
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

200
201
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
202
203
204
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
        config_path = os.path.join(self.config_dir, config_name)
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
205
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=self.embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
206

207
208
209
210
211
212
213
214
215
216
217
class CheckpointLoaderSimple:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    ckpt_dir = os.path.join(models_dir, "checkpoints")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (filter_files_extensions(recursive_search(s.ckpt_dir), supported_ckpt_extensions), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

218
    CATEGORY = "loaders"
219

220
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
221
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
222
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=CheckpointLoader.embedding_directory)
223
224
        return out

comfyanonymous's avatar
comfyanonymous committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

241
242
243
244
245
246
247
class LoraLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    lora_dir = os.path.join(models_dir, "loras")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
248
                              "lora_name": (filter_files_extensions(recursive_search(s.lora_dir), supported_pt_extensions), ),
249
250
251
252
253
254
255
256
257
258
259
260
261
                              "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
        lora_path = os.path.join(self.lora_dir, lora_name)
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
262
263
264
265
266
class VAELoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    vae_dir = os.path.join(models_dir, "vae")
    @classmethod
    def INPUT_TYPES(s):
267
        return {"required": { "vae_name": (filter_files_extensions(recursive_search(s.vae_dir), supported_pt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
268
269
270
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

271
272
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
277
278
    #TODO: scale factor?
    def load_vae(self, vae_name):
        vae_path = os.path.join(self.vae_dir, vae_name)
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
class ControlNetLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    controlnet_dir = os.path.join(models_dir, "controlnet")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "control_net_name": (filter_files_extensions(recursive_search(s.controlnet_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
        controlnet_path = os.path.join(self.controlnet_dir, control_net_name)
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class DiffControlNetLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    controlnet_dir = os.path.join(models_dir, "controlnet")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "control_net_name": (filter_files_extensions(recursive_search(s.controlnet_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
        controlnet_path = os.path.join(self.controlnet_dir, control_net_name)
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
314
315
316
317

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
318
319
320
321
322
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
323
324
325
326
327
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

328
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
329
330
331
332
333
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
334
335
336
337
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
338
339
340
            c.append(n)
        return (c, )

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
class T2IAdapterLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    t2i_adapter_dir = os.path.join(models_dir, "t2i_adapter")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "t2i_adapter_name": (filter_files_extensions(recursive_search(s.t2i_adapter_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_t2i_adapter"

    CATEGORY = "loaders"

    def load_t2i_adapter(self, t2i_adapter_name):
        t2i_path = os.path.join(self.t2i_adapter_dir, t2i_adapter_name)
        t2i_adapter = comfy.sd.load_t2i_adapter(t2i_path)
        return (t2i_adapter,)
comfyanonymous's avatar
comfyanonymous committed
357

358
359
360
361
362
class CLIPLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    clip_dir = os.path.join(models_dir, "clip")
    @classmethod
    def INPUT_TYPES(s):
363
        return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ),
364
365
366
367
368
369
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

370
    def load_clip(self, clip_name):
371
372
373
374
        clip_path = os.path.join(self.clip_dir, clip_name)
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory)
        return (clip,)

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
class CLIPVisionLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    clip_dir = os.path.join(models_dir, "clip_vision")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ),
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
        clip_path = os.path.join(self.clip_dir, clip_name)
        clip_vision = comfy_extras.clip_vision.load(clip_path)
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
398
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
399
400
    FUNCTION = "encode"

comfyanonymous's avatar
comfyanonymous committed
401
    CATEGORY = "conditioning/style_model"
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    style_model_dir = os.path.join(models_dir, "style_models")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "style_model_name": (filter_files_extensions(recursive_search(s.style_model_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
        style_model_path = os.path.join(self.style_model_dir, style_model_name)
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
428
429
430
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
431
432
433
434
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
435
    CATEGORY = "conditioning/style_model"
436

437
438
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
439
        c = []
440
441
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
442
443
444
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
445
446
447
448
449
450
451
452
453
454
455
456
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

457
458
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
459
460
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
461
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
462

comfyanonymous's avatar
comfyanonymous committed
463

comfyanonymous's avatar
comfyanonymous committed
464

comfyanonymous's avatar
comfyanonymous committed
465
466
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
467
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
468
469
470
471
472

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
473
474
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
475
476
477
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

478
479
    CATEGORY = "latent"

480
    def upscale(self, samples, upscale_method, width, height, crop):
481
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
482
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
483
484
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
485
486
487
488
489
490
491
492
493
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
494
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
495
496

    def rotate(self, samples, rotation):
497
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
498
499
500
501
502
503
504
505
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

506
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
507
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
508
509
510
511
512
513
514
515
516
517

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
518
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
519
520

    def flip(self, samples, flip_method):
521
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
522
        if flip_method.startswith("x"):
523
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
524
        elif flip_method.startswith("y"):
525
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
526
527

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
528
529
530
531
532
533
534
535

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
536
                              "feather": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
537
538
539
540
541
542
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

543
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
544
545
        x =  x // 8
        y = y // 8
546
        feather = feather // 8
547
548
549
550
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
551
552
553
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
554
555
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
556
557
558
559
560
561
562
563
564
565
566
567
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
568
569
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
570

comfyanonymous's avatar
comfyanonymous committed
571
572
573
574
575
576
577
578
579
580
581
582
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
583
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
584
585

    def crop(self, samples, width, height, x, y):
586
587
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
611
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
612
613
        return (s,)

614
615
616
617
618
619
620
621
622
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

623
    CATEGORY = "latent/inpaint"
624
625
626
627
628
629
630

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


631
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
632
633
    latent_image = latent["samples"]
    noise_mask = None
634
    device = model_management.get_torch_device()
635

comfyanonymous's avatar
comfyanonymous committed
636
637
638
639
640
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

641
642
643
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
644
        noise_mask = noise_mask.round()
645
646
647
648
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

649
    real_model = None
650
651
652
    model_management.load_model_gpu(model)
    real_model = model.model

653
654
655
656
657
658
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
659
    control_nets = []
660
661
662
663
664
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
665
666
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
667
668
669
670
671
672
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
673
674
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
675
676
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
677
678
679
680
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
    model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
681

682
683
684
685
686
687
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
    else:
        #other samplers
        pass

688
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
689
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
690
691
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
692

693
694
695
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
696

comfyanonymous's avatar
comfyanonymous committed
697
698
699
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
700
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

716
717
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
718
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
719
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
720

comfyanonymous's avatar
comfyanonymous committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
744

comfyanonymous's avatar
comfyanonymous committed
745
746
747
748
749
750
751
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
752
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
753
754
755
756
757
758
759
760

class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
761
762
                    {"images": ("IMAGE", ),
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
763
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
764
765
766
767
768
769
770
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

771
772
    CATEGORY = "image"

pythongosssss's avatar
pythongosssss committed
773
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
774
775
776
777
778
779
780
781
782
783
784
785
        def map_filename(filename):
            prefix_len = len(filename_prefix)
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
        try:
            counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
        except ValueError:
            counter = 1
786
787
788
        except FileNotFoundError:
            os.mkdir(self.output_dir)
            counter = 1
pythongosssss's avatar
pythongosssss committed
789
790

        paths = list()
comfyanonymous's avatar
comfyanonymous committed
791
792
793
794
795
796
797
798
799
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(i.astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
pythongosssss's avatar
pythongosssss committed
800
801
            file = f"{filename_prefix}_{counter:05}_.png"
            img.save(os.path.join(self.output_dir, file), pnginfo=metadata, optimize=True)
pythongosssss's avatar
pythongosssss committed
802
            paths.append(file)
803
            counter += 1
pythongosssss's avatar
pythongosssss committed
804
        return { "ui": { "images": paths } }
comfyanonymous's avatar
comfyanonymous committed
805

806
807
808
809
810
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
811
                    {"image": (sorted(os.listdir(s.input_dir)), )},
812
                }
813
814

    CATEGORY = "image"
815
816
817
818
819

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
820
821
        i = Image.open(image_path)
        image = i.convert("RGB")
822
        image = np.array(image).astype(np.float32) / 255.0
823
824
        image = torch.from_numpy(image)[None,]
        return (image,)
825

826
827
828
829
830
831
832
833
    @classmethod
    def IS_CHANGED(s, image):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

834
835
836
837
838
class LoadImageMask:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
839
                    {"image": (sorted(os.listdir(s.input_dir)), ),
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

    CATEGORY = "image"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
        image_path = os.path.join(self.input_dir, image)
        i = Image.open(image_path)
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

comfyanonymous's avatar
comfyanonymous committed
869
870
871
872
873
874
875
876
877
878
879
880
881
882
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image"
883

comfyanonymous's avatar
comfyanonymous committed
884
885
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
886
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
887
888
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


comfyanonymous's avatar
comfyanonymous committed
906
907
908
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
    "CheckpointLoader": CheckpointLoader,
909
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
910
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
911
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
912
913
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
914
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
915
916
917
918
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
comfyanonymous's avatar
comfyanonymous committed
919
    "LoadImage": LoadImage,
920
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
921
    "ImageScale": ImageScale,
922
    "ImageInvert": ImageInvert,
comfyanonymous's avatar
comfyanonymous committed
923
924
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
925
    "KSamplerAdvanced": KSamplerAdvanced,
926
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
927
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
928
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
929
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
930
    "LatentCrop": LatentCrop,
931
    "LoraLoader": LoraLoader,
932
    "CLIPLoader": CLIPLoader,
933
    "CLIPVisionEncode": CLIPVisionEncode,
934
    "StyleModelApply": StyleModelApply,
comfyanonymous's avatar
comfyanonymous committed
935
936
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
937
    "DiffControlNetLoader": DiffControlNetLoader,
938
    "T2IAdapterLoader": T2IAdapterLoader,
comfyanonymous's avatar
comfyanonymous committed
939
940
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
941
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
942
943
}

944
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
Hacker 17082006's avatar
Hacker 17082006 committed
945
def load_custom_nodes():
946
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
947
    if "__pycache__" in possible_modules:
Hacker 17082006's avatar
.  
Hacker 17082006 committed
948
        possible_modules.remove("__pycache__")
949

Hacker 17082006's avatar
Hacker 17082006 committed
950
    for possible_module in possible_modules:
951
952
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
953

954
        module_name = possible_module
Hacker 17082006's avatar
Hacker 17082006 committed
955
        try:
956
            if os.path.isfile(module_path):
957
                module_spec = importlib.util.spec_from_file_location(module_name, module_path)
958
            else:
959
                module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
960
            module = importlib.util.module_from_spec(module_spec)
961
            sys.modules[module_name] = module
962
            module_spec.loader.exec_module(module)
963
            if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
964
                NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
Hacker 17082006's avatar
Hacker 17082006 committed
965
            else:
Hacker 17082006's avatar
Hacker 17082006 committed
966
                print(f"Skip {possible_module} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
967
968
969
        except Exception as e:
            print(traceback.format_exc())
            print(f"Cannot import {possible_module} module for custom nodes:", e)
Hacker 17082006's avatar
Hacker 17082006 committed
970
971

load_custom_nodes()