nodes.py 39.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
8
import traceback
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

comfyanonymous's avatar
comfyanonymous committed
14
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18


import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
19
20
import comfy.utils

21
import comfy.clip_vision
22

23
import model_management
24
import importlib
comfyanonymous's avatar
comfyanonymous committed
25

26
import folder_paths
27
28
29
30

def before_node_execution():
    model_management.throw_exception_if_processing_interrupted()

31
32
def interrupt_processing(value=True):
    model_management.interrupt_current_processing(value)
33

34
35
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
36
37
38
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
39
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
40
41
42
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

43
44
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
45
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
46
47
48
49
50
51
52
53
54
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

55
56
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
57
58
59
60
61
62
63
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
64
65
66
67
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
68
69
70
71
72
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

73
74
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
75
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
76
77
78
79
80
81
82
83
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
84
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
90
91
92
93
94
95

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

96
97
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
98
    def decode(self, vae, samples):
99
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
116
117
118
119
120
121
122
123
124
125
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

126
127
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
128
    def encode(self, vae, pixels):
129
130
131
132
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
133
134
135
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
136

comfyanonymous's avatar
comfyanonymous committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
173
174
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

175
        pixels = pixels.clone()
176
177
178
179
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

180
        #grow mask by a few pixels to keep things seamless in latent space
181
        kernel_tensor = torch.ones((1, 1, 6, 6))
182
183
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
184
185
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
186
            pixels[:,:,:,i] *= m
187
188
189
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

190
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
191
192
193
194

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
195
196
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
197
198
199
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

200
    CATEGORY = "advanced/loaders"
201

comfyanonymous's avatar
comfyanonymous committed
202
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
203
204
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
205
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
206

207
208
209
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
210
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
211
212
213
214
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

215
    CATEGORY = "loaders"
216

217
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
218
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
219
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
220
221
        return out

222
223
224
225
226
227
228
229
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

230
    CATEGORY = "loaders"
231
232
233
234
235
236

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

253
254
255
256
257
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
258
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
259
260
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
261
262
263
264
265
266
267
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
268
        lora_path = folder_paths.get_full_path("loras", lora_name)
269
270
271
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
288
289
290
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
291
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
292
293
294
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

295
296
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
297
298
    #TODO: scale factor?
    def load_vae(self, vae_name):
299
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
300
301
302
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
303
304
305
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
306
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
307
308
309
310
311
312
313

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
314
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
315
316
317
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

318
319
320
321
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
322
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
323
324
325
326
327
328
329

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
330
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
331
332
333
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
334
335
336
337

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
338
339
340
341
342
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
343
344
345
346
347
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

348
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
349
350
351
352
353
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
354
355
356
357
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
358
359
360
            c.append(n)
        return (c, )

361
362
363
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
364
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
365
366
367
368
369
370
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

371
    def load_clip(self, clip_name):
372
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
373
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
374
375
        return (clip,)

376
377
378
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
379
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
380
381
382
383
384
385
386
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
387
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
388
        clip_vision = comfy.clip_vision.load(clip_path)
389
390
391
392
393
394
395
396
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
397
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
398
399
    FUNCTION = "encode"

400
    CATEGORY = "conditioning"
401
402
403
404
405
406
407
408

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
409
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
410
411
412
413
414
415
416

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
417
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
418
419
420
421
422
423
424
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
425
426
427
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
428
429
430
431
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
432
    CATEGORY = "conditioning/style_model"
433

434
435
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
436
        c = []
437
438
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
439
440
441
            c.append(n)
        return (c, )

442
443
444
445
446
447
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
448
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
449
450
451
452
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

453
    CATEGORY = "conditioning"
454

455
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
456
457
458
        c = []
        for t in conditioning:
            o = t[1].copy()
459
            x = (clip_vision_output, strength, noise_augmentation)
460
461
462
463
464
465
466
467
468
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )


comfyanonymous's avatar
comfyanonymous committed
469
470
471
472
473
474
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
475
476
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
477
478
479
480
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

481
482
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
483
484
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
485
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
486

comfyanonymous's avatar
comfyanonymous committed
487

comfyanonymous's avatar
comfyanonymous committed
488

comfyanonymous's avatar
comfyanonymous committed
489
490
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
491
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
492
493
494
495

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
496
497
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
498
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
499
500
501
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

502
503
    CATEGORY = "latent"

504
    def upscale(self, samples, upscale_method, width, height, crop):
505
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
506
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
507
508
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
509
510
511
512
513
514
515
516
517
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
518
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
519
520

    def rotate(self, samples, rotation):
521
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
522
523
524
525
526
527
528
529
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

530
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
531
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
532
533
534
535
536
537
538
539
540
541

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
542
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
543
544

    def flip(self, samples, flip_method):
545
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
546
        if flip_method.startswith("x"):
547
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
548
        elif flip_method.startswith("y"):
549
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
550
551

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
552
553
554
555

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
556
557
558
559
560
561
562
563
564
        return {
            "required": {
                "samples_to": ("LATENT",),
                "samples_from": ("LATENT",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
            }
        }
comfyanonymous's avatar
comfyanonymous committed
565
566
567
568
569
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

570
571
572
573
574
575
576
    def composite(self, samples_to, samples_from, x, y, feather):
        output = samples_to.copy()
        destination = samples_to["samples"].clone()
        source = samples_from["samples"]

        left, top = (x // 8, y // 8)
        right, bottom = (left + source.shape[3], top + source.shape[2],)
577
        feather = feather // 8
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613



        # calculate the bounds of the source that will be overlapping the destination
        # this prevents the source trying to overwrite latent pixels that are out of bounds
        # of the destination
        visible_width, visible_height = (destination.shape[3] - left, destination.shape[2] - top,)

        mask = torch.ones_like(source)

        for f in range(feather):
            feather_rate = (f + 1.0) / feather

            if left > 0:
                mask[:, :, :, f] *= feather_rate

            if right < destination.shape[3] - 1:
                mask[:, :, :, -f] *= feather_rate

            if top > 0:
                mask[:, :, f, :] *= feather_rate

            if bottom < destination.shape[2] - 1:
                mask[:, :, -f, :] *= feather_rate

        mask = mask[:, :, :visible_height, :visible_width]
        inverse_mask = torch.ones_like(mask) - mask

        source_portion = mask * source[:, :, :visible_height, :visible_width]
        destination_portion = inverse_mask  * destination[:, :, top:bottom, left:right]

        destination[:, :, top:bottom, left:right] = source_portion + destination_portion

        output["samples"] = destination

        return (output,)
comfyanonymous's avatar
comfyanonymous committed
614

comfyanonymous's avatar
comfyanonymous committed
615
616
617
618
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
619
620
621
622
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
623
624
625
626
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
627
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
628
629

    def crop(self, samples, width, height, x, y):
630
631
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
655
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
656
657
        return (s,)

658
659
660
661
662
663
664
665
666
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

667
    CATEGORY = "latent/inpaint"
668
669
670
671
672
673
674

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


675
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
676
677
    latent_image = latent["samples"]
    noise_mask = None
678
    device = model_management.get_torch_device()
679

comfyanonymous's avatar
comfyanonymous committed
680
681
682
683
684
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

685
686
687
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
688
        noise_mask = noise_mask.round()
689
690
691
692
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

693
    real_model = None
694
695
696
    model_management.load_model_gpu(model)
    real_model = model.model

697
698
699
700
701
702
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
703
    control_nets = []
704
705
706
707
708
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
709
710
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
711
712
713
714
715
716
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
717
718
        if 'control' in n[1]:
            control_nets += [n[1]['control']]
719
720
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
721
722
723
724
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
    model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
725

726
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
727
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
728
729
730
731
    else:
        #other samplers
        pass

732
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
733
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
734
735
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
736

737
738
739
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
740

comfyanonymous's avatar
comfyanonymous committed
741
742
743
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
744
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

760
761
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
762
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
763
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
764

comfyanonymous's avatar
comfyanonymous committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
788

comfyanonymous's avatar
comfyanonymous committed
789
790
791
792
793
794
795
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
796
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
797
798
799

class SaveImage:
    def __init__(self):
800
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
801
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
802
803
804
805

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
806
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
807
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
808
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
809
810
811
812
813
814
815
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

816
817
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
818
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
819
        def map_filename(filename):
820
            prefix_len = len(os.path.basename(filename_prefix))
821
822
823
824
825
826
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
827

828
829
830
831
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
832

833
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
834

m957ymj75urz's avatar
m957ymj75urz committed
835
836
837
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
838
        full_output_folder = os.path.join(self.output_dir, subfolder)
839

840
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
841
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
842
843
            return {}

844
        try:
845
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
846
847
        except ValueError:
            counter = 1
848
        except FileNotFoundError:
849
            os.makedirs(full_output_folder, exist_ok=True)
850
            counter = 1
pythongosssss's avatar
pythongosssss committed
851

m957ymj75urz's avatar
m957ymj75urz committed
852
        results = list()
comfyanonymous's avatar
comfyanonymous committed
853
854
        for image in images:
            i = 255. * image.cpu().numpy()
855
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
856
857
858
859
860
861
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
862

863
            file = f"{filename}_{counter:05}_.png"
864
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
865
866
867
868
869
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            });
870
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
871

m957ymj75urz's avatar
m957ymj75urz committed
872
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
873

pythongosssss's avatar
pythongosssss committed
874
875
class PreviewImage(SaveImage):
    def __init__(self):
876
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
877
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
878
879
880

    @classmethod
    def INPUT_TYPES(s):
881
        return {"required":
pythongosssss's avatar
pythongosssss committed
882
883
884
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
885

886
887
888
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
889
        input_dir = folder_paths.get_input_directory()
890
        return {"required":
891
                    {"image": (sorted(os.listdir(input_dir)), )},
892
                }
893
894

    CATEGORY = "image"
895

896
    RETURN_TYPES = ("IMAGE", "MASK")
897
898
    FUNCTION = "load_image"
    def load_image(self, image):
899
900
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
901
902
        i = Image.open(image_path)
        image = i.convert("RGB")
903
        image = np.array(image).astype(np.float32) / 255.0
904
        image = torch.from_numpy(image)[None,]
905
906
907
908
909
910
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
911

912
913
    @classmethod
    def IS_CHANGED(s, image):
914
915
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
916
917
918
919
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
920

921
922
923
class LoadImageMask:
    @classmethod
    def INPUT_TYPES(s):
924
        input_dir = folder_paths.get_input_directory()
925
        return {"required":
926
                    {"image": (sorted(os.listdir(input_dir)), ),
927
928
929
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

930
    CATEGORY = "mask"
931
932
933
934

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
935
936
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
937
938
939
940
941
942
943
944
945
946
947
948
949
950
        i = Image.open(image_path)
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
951
952
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
953
954
955
956
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
957

comfyanonymous's avatar
comfyanonymous committed
958
959
960
961
962
963
964
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
965
966
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
967
968
969
970
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

971
    CATEGORY = "image/upscaling"
972

comfyanonymous's avatar
comfyanonymous committed
973
974
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
975
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
976
977
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
978

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
995
996
997
998
999
1000
1001
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1002
1003
1004
1005
1006
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1007
1008
1009
1010
1011
1012
1013
1014
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1015
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1028

1029
1030
1031
1032
1033
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1034
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1054

Guo Y.K's avatar
Guo Y.K committed
1055
1056
1057
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1058
1059
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1060
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1061
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1062
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1063
1064
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1065
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1066
1067
1068
1069
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1070
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1071
    "LoadImage": LoadImage,
1072
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1073
    "ImageScale": ImageScale,
1074
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1075
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1076
1077
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
1078
    "KSamplerAdvanced": KSamplerAdvanced,
1079
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1080
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1081
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1082
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1083
    "LatentCrop": LatentCrop,
1084
    "LoraLoader": LoraLoader,
1085
    "CLIPLoader": CLIPLoader,
1086
    "CLIPVisionEncode": CLIPVisionEncode,
1087
    "StyleModelApply": StyleModelApply,
1088
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1089
1090
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1091
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1092
1093
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1094
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1095
    "VAEEncodeTiled": VAEEncodeTiled,
1096
    "TomePatchModel": TomePatchModel,
1097
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1098
    "CheckpointLoader": CheckpointLoader,
comfyanonymous's avatar
comfyanonymous committed
1099
1100
}

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1122
def load_custom_nodes():
1123
    CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
1124
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
1125
    if "__pycache__" in possible_modules:
Hacker 17082006's avatar
.  
Hacker 17082006 committed
1126
        possible_modules.remove("__pycache__")
1127

Hacker 17082006's avatar
Hacker 17082006 committed
1128
    for possible_module in possible_modules:
1129
1130
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1131
        load_custom_node(module_path)
1132

1133
1134
def init_custom_nodes():
    load_custom_nodes()
1135
1136
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1137
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))