test_utils.py 42.7 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Lifu Huang's avatar
Lifu Huang committed
4
import asyncio
5
import copy
6
import json
7
import logging
8
import os
9
import random
YanbingJiang's avatar
YanbingJiang committed
10
import re
11
import subprocess
12
import threading
13
import time
14
import unittest
15
from concurrent.futures import ThreadPoolExecutor
Byron Hsu's avatar
Byron Hsu committed
16
from dataclasses import dataclass
Liangsheng Yin's avatar
Liangsheng Yin committed
17
from functools import partial
18
from pathlib import Path
19
from types import SimpleNamespace
20
from typing import Any, Awaitable, Callable, List, Optional, Tuple
Liangsheng Yin's avatar
Liangsheng Yin committed
21

22
import aiohttp
Lianmin Zheng's avatar
Lianmin Zheng committed
23
24
import numpy as np
import requests
25
26
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
27

28
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
29
from sglang.global_config import global_config
30
31
from sglang.srt.utils import (
    get_bool_env_var,
32
    get_device,
33
34
35
36
    is_port_available,
    kill_process_tree,
    retry,
)
37
from sglang.test.run_eval import run_eval
38
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
39

Lianmin Zheng's avatar
Lianmin Zheng committed
40
41
42
# General test models
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
43
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_BASE = "meta-llama/Llama-3.2-1B"
Lianmin Zheng's avatar
Lianmin Zheng committed
44
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
45
46
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST_BASE = "Qwen/Qwen1.5-MoE-A2.7B"
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST_CHAT = "Qwen/Qwen1.5-MoE-A2.7B-Chat"
Lianmin Zheng's avatar
Lianmin Zheng committed
47
48

# MLA test models
woodx's avatar
woodx committed
49
50
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST = "cross-encoder/ms-marco-MiniLM-L6-v2"
Lianmin Zheng's avatar
Lianmin Zheng committed
51
52
53
54
55
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_TEST_MLA = "lmsys/sglang-ci-dsv3-test"
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN = "lmsys/sglang-ci-dsv3-test-NextN"

56
57
58
# NVFP4 models
DEFAULT_DEEPSEEK_NVFP4_MODEL_FOR_TEST = "nvidia/DeepSeek-R1-0528-FP4"

Lianmin Zheng's avatar
Lianmin Zheng committed
59
60
61
62
# FP8 models
DEFAULT_MODEL_NAME_FOR_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_ACCURACY_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST_FP8 = (
HandH1998's avatar
HandH1998 committed
63
64
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic"
)
Lianmin Zheng's avatar
Lianmin Zheng committed
65
DEFAULT_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_FP8 = (
66
67
    "nvidia/Llama-3.1-8B-Instruct-FP8"
)
DiweiSun's avatar
DiweiSun committed
68
69
70
71
72
73
DEFAULT_MODEL_NAME_FOR_TEST_QWEN_FP8 = "Qwen/Qwen3-1.7B-FP8"
DEFAULT_MODEL_NAME_FOR_TEST_FP8_WITH_MOE = "gaunernst/DeepSeek-V2-Lite-Chat-FP8"

# W8A8 models
DEFAULT_MODEL_NAME_FOR_TEST_W8A8 = "RedHatAI/Llama-3.2-3B-quantized.w8a8"
DEFAULT_MODEL_NAME_FOR_TEST_W8A8_WITH_MOE = "nytopop/Qwen3-30B-A3B.w8a8"
74

Lianmin Zheng's avatar
Lianmin Zheng committed
75
76
77
# EAGLE
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST = "meta-llama/Llama-2-7b-chat-hf"
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST = "lmsys/sglang-EAGLE-llama2-chat-7B"
Stefan He's avatar
Stefan He committed
78
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3 = "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B"
79
80
81
82
DEFAULT_STANDALONE_SPECULATIVE_TARGET_MODEL_FOR_TEST = (
    "meta-llama/Llama-3.1-8B-Instruct"
)
DEFAULT_STANDALONE_SPECULATIVE_DRAFT_MODEL_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
83
DEFAULT_LOOKAHEAD_SPECULATIVE_TARGET_MODEL_FOR_TEST = "Qwen/Qwen2.5-Coder-7B-Instruct"
Lianmin Zheng's avatar
Lianmin Zheng committed
84
85

# Other use cases
Stefan He's avatar
Stefan He committed
86
87
88
DEFAULT_MODEL_NAME_FOR_TEST_LOCAL_ATTENTION = (
    "meta-llama/Llama-4-Scout-17B-16E-Instruct"
)
89
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
Xihuai Wang's avatar
Xihuai Wang committed
90
DEFAULT_REASONING_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
Jinyan Chen's avatar
Jinyan Chen committed
91
DEFAULT_DEEPPEP_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-V3-0324"
92
93
94
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST = (
    "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
)
95
DEFAULT_ENABLE_THINKING_MODEL_NAME_FOR_TEST = "Qwen/Qwen3-30B-A3B"
96
DEFAULT_DEEPSEEK_W4AFP8_MODEL_FOR_TEST = "Barrrrry/DeepSeek-R1-W4AFP8"
Lianmin Zheng's avatar
Lianmin Zheng committed
97
98

# Nightly tests
99
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
100
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
101
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
102
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,zai-org/GLM-4.5-Air-FP8"
103
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4,hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
104
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN = "Qwen/Qwen2.5-1.5B-Instruct"
105
DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST = "Qwen/Qwen2.5-VL-3B-Instruct"
106
107
108
109

DEFAULT_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
DEFAULT_VIDEO_URL = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"

110
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
Lianmin Zheng's avatar
Lianmin Zheng committed
111

112
113
114

def is_in_ci():
    """Return whether it is in CI runner."""
115
    return get_bool_env_var("SGLANG_IS_IN_CI")
116
117


118
119
120
121
122
def is_in_amd_ci():
    """Return whether it is in an AMD CI runner."""
    return get_bool_env_var("SGLANG_AMD_CI")


123
124
125
126
127
128
129
130
131
def _use_cached_default_models(model_repo: str):
    cache_dir = os.getenv("DEFAULT_MODEL_CACHE_DIR")
    if cache_dir and model_repo:
        model_path = os.path.join(cache_dir, model_repo)
        if os.path.isdir(model_path):
            return os.path.abspath(model_path)
    return ""


132
if is_in_ci():
133
134
135
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        5000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
136
else:
137
138
139
140
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        7000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
DEFAULT_URL_FOR_TEST = f"http://127.0.0.1:{DEFAULT_PORT_FOR_SRT_TEST_RUNNER + 1000}"
141

142
143
144
if is_in_amd_ci():
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 3000

Lianmin Zheng's avatar
Lianmin Zheng committed
145

Liangsheng Yin's avatar
Liangsheng Yin committed
146
147
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


163
164
165
166
167
168
169
170
171
172
173
def find_available_port(base_port: int):
    port = base_port + random.randint(100, 1000)
    while True:
        if is_port_available(port):
            return port
        if port < 60000:
            port += 42
        else:
            port -= 43


Liangsheng Yin's avatar
Liangsheng Yin committed
174
175
176
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


193
def call_generate_outlines(
194
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
195
):
Liangsheng Yin's avatar
Liangsheng Yin committed
196
197
    assert url is not None

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
215
216
217
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
273
274
275
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
276
277
278
279
280
281
282
283
284
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
285
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
286
287
288
289
290
291
292
293
294
295
296
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
297
298
299
300
301
302
303
304
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


305
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
306
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
307
308
309
310
311
312
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
313
314
315
316
        choices=[
            "vllm",
            "outlines",
            "lightllm",
317
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
318
319
320
321
            "guidance",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
322
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
323
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
324
325
326
327
328
329
330
331
332
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
333
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
334
335
            "lightllm": 22000,
            "srt-raw": 30000,
336
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
337
338
339
340
341
        }
        args.port = default_port.get(args.backend, None)
    return args


342
343
344
345
346
347
348
349
350
351
352
353
def auto_config_device() -> str:
    """Auto-config available device platform"""

    try:
        device = get_device()
    except (RuntimeError, ImportError) as e:
        print(f"Warning: {e} - Falling back to CPU")
        device = "cpu"

    return device


354
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
355
356
357
358
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
359
360
361
362
363
364
365
    parser.add_argument(
        "--device",
        type=str,
        default="auto",
        choices=["auto", "cuda", "rocm", "cpu"],
        help="Device type (auto/cuda/rocm/cpu). Auto will detect available platforms",
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
366
    parser.add_argument("--result-file", type=str, default="result.jsonl")
367
    parser.add_argument("--raw-result-file", type=str)
Lianmin Zheng's avatar
Lianmin Zheng committed
368
    args = parser.parse_args()
369

Lianmin Zheng's avatar
Lianmin Zheng committed
370
371
372
    return args


373
def select_sglang_backend(args: argparse.Namespace):
374
375
376
    from sglang.lang.backend.openai import OpenAI
    from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint

Lianmin Zheng's avatar
Lianmin Zheng committed
377
378
379
380
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
381
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
382
383
384
385
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
386
387


388
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
389
390
391
392
393
394
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
395
396
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
397
398
399
400
401
402
403
404
405
406
407
408
409
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


410
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


427
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
428
429
430
431
432
433
434
435
436
437
438
439
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


440
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
441
442
443
444
445
446
447
448
449
450
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
451
452


453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
def _get_default_models():
    import inspect

    current_module = inspect.getmodule(_get_default_models)
    default_models = set()
    for name, value in current_module.__dict__.items():
        if (
            isinstance(name, str)
            and "DEFAULT_" in name
            and "MODEL_" in name
            and isinstance(value, str)
        ):
            if "," in value:
                parts = [part.strip() for part in value.split(",")]
                default_models.update(parts)
            else:
                default_models.add(value.strip())
    return json.dumps(list(default_models))


def try_cached_model(model_repo: str):
    model_dir = _use_cached_default_models(model_repo)
    return model_dir if model_dir else model_repo


478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
def popen_with_error_check(command: list[str], allow_exit: bool = False):
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    def _run_and_check():
        stdout, stderr = process.communicate()

        while process.poll() is None:
            time.sleep(5)

        if not allow_exit or process.returncode != 0:
            raise Exception(
                f"{command} exited with code {process.returncode}\n{stdout=}\n{stderr=}"
            )

    t = threading.Thread(target=_run_and_check)
    t.start()
    return process


497
def popen_launch_server(
498
499
500
501
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
502
    other_args: list[str] = [],
503
    env: Optional[dict] = None,
504
    return_stdout_stderr: Optional[tuple] = None,
505
    device: str = "auto",
506
    pd_separated: bool = False,
507
):
508
509
510
511
512
513
514
515
516
517
518
519
520
    """Launch a server process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed
    if device == "auto":
        device = auto_config_device()
        print(f"Auto-configed device: {device}", flush=True)
        other_args = list(other_args)
        other_args += ["--device", str(device)]

521
522
523
    _, host, port = base_url.split(":")
    host = host[2:]

524
    if pd_separated:
525
526
527
528
        command = "sglang.launch_pd_server"
    else:
        command = "sglang.launch_server"

529
530
531
    command = [
        "python3",
        "-m",
532
        command,
533
534
        "--model-path",
        model,
535
        *[str(x) for x in other_args],
536
    ]
Chayenne's avatar
Chayenne committed
537

538
    if pd_separated:
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
        command.extend(
            [
                "--lb-host",
                host,
                "--lb-port",
                port,
            ]
        )
    else:
        command.extend(
            [
                "--host",
                host,
                "--port",
                port,
            ]
        )

557
558
559
    if api_key:
        command += ["--api-key", api_key]

560
561
    print(f"command={' '.join(command)}")

562
563
564
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
565
566
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
567
568
569
570
571
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
572

573
    start_time = time.perf_counter()
574
    with requests.Session() as session:
575
        while time.perf_counter() - start_time < timeout:
576
577
578
579
580
581
582
583
584

            return_code = process.poll()
            if return_code is not None:
                # Server failed to start (non-zero exit code) or crashed
                raise Exception(
                    f"Server process exited with code {return_code}. "
                    "Check server logs for errors."
                )

585
586
587
588
589
590
591
592
593
594
595
596
597
            try:
                headers = {
                    "Content-Type": "application/json; charset=utf-8",
                    "Authorization": f"Bearer {api_key}",
                }
                response = session.get(
                    f"{base_url}/health_generate",
                    headers=headers,
                )
                if response.status_code == 200:
                    return process
            except requests.RequestException:
                pass
598
599
600

            return_code = process.poll()
            if return_code is not None:
fzyzcjy's avatar
fzyzcjy committed
601
602
603
                raise Exception(
                    f"Server unexpectedly exits ({return_code=}). Usually there will be error logs describing the cause far above this line."
                )
604

605
            time.sleep(10)
606
607

    kill_process_tree(process.pid)
608
    raise TimeoutError("Server failed to start within the timeout period.")
609
610


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
def popen_launch_pd_server(
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: list[str] = (),
    env: Optional[dict] = None,
):
    _, host, port = base_url.split(":")
    host = host[2:]

    command = "sglang.launch_server"

    command = [
        "python3",
        "-m",
        command,
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    command.extend(
        [
            "--host",
            host,
            "--port",
            port,
        ]
    )

    if api_key:
        command += ["--api-key", api_key]

    print(f"command={' '.join(command)}")

647
    process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
648

649
    return process
650
651


652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


Byron Hsu's avatar
Byron Hsu committed
676
677
678
679
680
681
682
@dataclass
class TestFile:
    name: str
    estimated_time: float = 60


def run_unittest_files(files: List[TestFile], timeout_per_file: float):
683
    tic = time.perf_counter()
684
685
    success = True

Lianmin Zheng's avatar
Lianmin Zheng committed
686
    for i, file in enumerate(files):
Lianmin Zheng's avatar
Lianmin Zheng committed
687
        filename, estimated_time = file.name, file.estimated_time
688
        process = None
689

Mingyi's avatar
Mingyi committed
690
        def run_one_file(filename):
691
692
            nonlocal process

Mingyi's avatar
Mingyi committed
693
            filename = os.path.join(os.getcwd(), filename)
Lianmin Zheng's avatar
Lianmin Zheng committed
694
            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
695
                f".\n.\nBegin ({i}/{len(files) - 1}):\npython3 {filename}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
696
697
                flush=True,
            )
698
            tic = time.perf_counter()
Lianmin Zheng's avatar
Lianmin Zheng committed
699

Mingyi's avatar
Mingyi committed
700
701
702
703
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
704
            elapsed = time.perf_counter() - tic
Lianmin Zheng's avatar
Lianmin Zheng committed
705
706

            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
707
                f".\n.\nEnd ({i}/{len(files) - 1}):\n{filename=}, {elapsed=:.0f}, {estimated_time=}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
708
709
                flush=True,
            )
Mingyi's avatar
Mingyi committed
710
            return process.returncode
711
712

        try:
Mingyi's avatar
Mingyi committed
713
714
715
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
716
717
718
            assert (
                ret_code == 0
            ), f"expected return code 0, but {filename} returned {ret_code}"
719
        except TimeoutError:
720
            kill_process_tree(process.pid)
721
722
            time.sleep(5)
            print(
723
724
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
725
            )
Mingyi's avatar
Mingyi committed
726
727
            success = False
            break
728
729

    if success:
730
        print(f"Success. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
731
    else:
732
        print(f"Fail. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
733
734

    return 0 if success else -1
735
736
737
738


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
739
740


741
742
743
744
745
746
def get_benchmark_args(
    base_url="",
    dataset_name="",
    dataset_path="",
    tokenizer="",
    num_prompts=500,
747
    sharegpt_output_len=None,
748
749
    random_input_len=4096,
    random_output_len=2048,
750
    sharegpt_context_len=None,
751
752
753
    request_rate=float("inf"),
    disable_stream=False,
    disable_ignore_eos=False,
754
    seed: int = 0,
755
    device="auto",
756
    pd_separated: bool = False,
Lifu Huang's avatar
Lifu Huang committed
757
    lora_name=None,
758
759
760
761
762
763
764
765
766
767
768
):
    return SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
        dataset_name=dataset_name,
        dataset_path=dataset_path,
        model=None,
        tokenizer=tokenizer,
        num_prompts=num_prompts,
769
770
        sharegpt_output_len=sharegpt_output_len,
        sharegpt_context_len=sharegpt_context_len,
771
772
773
774
775
776
777
778
779
        random_input_len=random_input_len,
        random_output_len=random_output_len,
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        output_file=None,
        disable_tqdm=False,
        disable_stream=disable_stream,
        return_logprob=False,
780
        seed=seed,
781
782
783
784
        disable_ignore_eos=disable_ignore_eos,
        extra_request_body=None,
        apply_chat_template=False,
        profile=None,
Lifu Huang's avatar
Lifu Huang committed
785
        lora_name=lora_name,
786
        prompt_suffix="",
787
        device=device,
788
        pd_separated=pd_separated,
789
790
791
    )


792
793
794
795
796
797
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
798
799
    dataset_path="",
    tokenizer=None,
800
801
    random_input_len=4096,
    random_output_len=2048,
802
    sharegpt_context_len=None,
803
    disable_stream=False,
804
    disable_ignore_eos=False,
805
    need_warmup=False,
806
    seed: int = 0,
807
    device="auto",
Lifu Huang's avatar
Lifu Huang committed
808
809
    background_task: Optional[Callable[[str, asyncio.Event], Awaitable[None]]] = None,
    lora_name: Optional[str] = None,
810
):
811
812
    if device == "auto":
        device = auto_config_device()
813
814
815
816
817
818
819
820
821
822
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
823
    args = get_benchmark_args(
824
        base_url=base_url,
825
        dataset_name=dataset_name,
826
827
        dataset_path=dataset_path,
        tokenizer=tokenizer,
828
        num_prompts=num_prompts,
829
830
        random_input_len=random_input_len,
        random_output_len=random_output_len,
831
        sharegpt_context_len=sharegpt_context_len,
832
        request_rate=request_rate,
833
        disable_stream=disable_stream,
834
        disable_ignore_eos=disable_ignore_eos,
835
        seed=seed,
836
        device=device,
Lifu Huang's avatar
Lifu Huang committed
837
        lora_name=lora_name,
838
839
    )

Lifu Huang's avatar
Lifu Huang committed
840
    async def _run():
841
842
843
        if need_warmup:
            warmup_args = copy.deepcopy(args)
            warmup_args.num_prompts = 16
Lifu Huang's avatar
Lifu Huang committed
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
            await asyncio.to_thread(run_benchmark, warmup_args)

        start_event = asyncio.Event()
        stop_event = asyncio.Event()
        task_handle = (
            asyncio.create_task(background_task(base_url, start_event, stop_event))
            if background_task
            else None
        )

        try:
            start_event.set()
            result = await asyncio.to_thread(run_benchmark, args)
        finally:
            if task_handle:
                stop_event.set()
                await task_handle

        return result

    try:
        res = asyncio.run(_run())
866
    finally:
867
        kill_process_tree(process.pid)
868
869
870

    assert res["completed"] == num_prompts
    return res
871
872


873
874
875
876
877
878
def run_bench_serving_multi(
    model,
    base_url,
    other_server_args,
    benchmark_args,
    need_warmup=False,
879
    pd_separated=False,
880
881
882
883
884
885
886
):
    # Launch the server
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
887
        pd_separated=pd_separated,
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
    )

    # run benchmark for all
    res_l = []
    try:
        for args in benchmark_args:
            if need_warmup:
                warmup_args = copy.deepcopy(args)
                warmup_args.num_prompts = 16
                run_benchmark(warmup_args)

            res = run_benchmark(args)
            res_l.append((args, res))
    finally:
        kill_process_tree(process.pid)

    return res_l


907
def run_bench_one_batch(model, other_args):
908
909
910
911
912
913
914
915
916
917
918
919
    """Launch a offline process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed

    device = auto_config_device()
    print(f"Auto-configed device: {device}", flush=True)
    other_args += ["--device", str(device)]

920
921
922
    command = [
        "python3",
        "-m",
923
        "sglang.bench_one_batch",
924
925
926
927
928
929
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
930
        *[str(x) for x in other_args],
931
    ]
saienduri's avatar
saienduri committed
932
933
    if model is not None:
        command += ["--model-path", model]
934
935
936
937
938
939
940
941
942
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

YanbingJiang's avatar
YanbingJiang committed
943
944
945
946
947
948
949
950
951
952
953
954
955
        # Return prefill_latency, decode_throughput, decode_latency
        prefill_line = output.split("\n")[-9]
        decode_line = output.split("\n")[-3]
        pattern = (
            r"latency: (?P<latency>\d+\.\d+).*?throughput:\s*(?P<throughput>\d+\.\d+)"
        )
        match = re.search(pattern, prefill_line)
        if match:
            prefill_latency = float(match.group("latency"))
        match = re.search(pattern, decode_line)
        if match:
            decode_latency = float(match.group("latency"))
            decode_throughput = float(match.group("throughput"))
956
    finally:
957
        kill_process_tree(process.pid)
958

YanbingJiang's avatar
YanbingJiang committed
959
    return prefill_latency, decode_throughput, decode_latency
960
961


962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
def run_bench_offline_throughput(model, other_args):
    command = [
        "python3",
        "-m",
        "sglang.bench_offline_throughput",
        "--num-prompts",
        "1",
        "--dataset-name",
        "random",
        "--random-input-len",
        "256",
        "--random-output-len",
        "256",
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    print(f"{command=}")
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        output_throughput = -1
        for line in output.split("\n"):
            if "Last generation throughput (tok/s):" in line:
                output_throughput = float(line.split(":")[-1])
    finally:
        kill_process_tree(process.pid)

    return output_throughput


1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
def run_bench_one_batch_server(
    model,
    base_url,
    server_args,
    bench_args,
    other_server_args,
    simulate_spec_acc_lens=None,
):
    from sglang.bench_one_batch_server import run_benchmark

    if simulate_spec_acc_lens is not None:
        env = {**os.environ, "SIMULATE_ACC_LEN": str(simulate_spec_acc_lens)}
    else:
        env = None

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
        env=env,
    )
    try:
        run_benchmark(server_args=server_args, bench_args=bench_args)
    finally:
        kill_process_tree(process.pid)


1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
1060
1061


1062
1063
STDERR_FILENAME = "/tmp/stderr.txt"
STDOUT_FILENAME = "/tmp/stdout.txt"
1064
1065


1066
def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
1067
    """Print the output in real time with another thread."""
1068
    while not os.path.exists(filename):
1069
        time.sleep(0.01)
1070

1071
1072
    pt = 0
    while pt >= 0:
1073
        if pt > 0 and not os.path.exists(filename):
1074
            break
1075
1076
1077
1078
1079
        try:
            lines = open(filename).readlines()
        except FileNotFoundError:
            print(f"{pt=}, {os.path.exists(filename)=}")
            raise
1080
1081
        for line in lines[pt:]:
            print(line, end="", flush=True)
1082
            output_lines.append(line)
1083
            pt += 1
1084
        time.sleep(0.1)
1085
1086


1087
1088
def run_and_check_memory_leak(
    workload_func,
1089
    disable_radix_cache,
1090
    enable_mixed_chunk,
1091
    disable_overlap,
1092
    chunked_prefill_size,
1093
    assert_has_abort,
1094
):
1095
1096
1097
1098
1099
1100
    other_args = [
        "--chunked-prefill-size",
        str(chunked_prefill_size),
        "--log-level",
        "debug",
    ]
1101
1102
1103
1104
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
1105
1106
    if disable_overlap:
        other_args += ["--disable-overlap-schedule"]
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

1128
1129
    # Run the workload
    workload_func(base_url, model)
1130
1131

    # Clean up everything
1132
    kill_process_tree(process.pid)
1133
1134
    stdout.close()
    stderr.close()
1135
1136
1137
1138
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
Lianmin Zheng's avatar
Lianmin Zheng committed
1139
    kill_process_tree(process.pid)
1140
1141
1142
1143
1144
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
1145
    has_abort = False
1146
    for line in output_lines:
Lianmin Zheng's avatar
Lianmin Zheng committed
1147
        if "Uvicorn running" in line:
1148
1149
1150
            has_new_server = True
        if "leak" in line:
            has_leak = True
1151
1152
        if "Abort" in line:
            has_abort = True
1153
1154

    assert has_new_server
1155
    assert not has_leak
1156
1157
    if assert_has_abort:
        assert has_abort
1158
1159


1160
1161
1162
1163
def run_command_and_capture_output(command, env: Optional[dict] = None):
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = subprocess.Popen(
1164
        command, stdout=stdout, stderr=stdout, env=env, text=True
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines, STDOUT_FILENAME))
    t.start()

    # Join the process
    process.wait()

    stdout.close()
    stderr.close()
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
    kill_process_tree(process.pid)
    t.join()

    return output_lines


1187
1188
1189
def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
1190
    disable_overlap=False,
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
1205
            assert metrics["score"] >= 0.65, f"{metrics=}"
1206
1207
1208
        finally:
            pass

Chayenne's avatar
Chayenne committed
1209
1210
1211
1212
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
1213
        disable_overlap,
Chayenne's avatar
Chayenne committed
1214
        chunked_prefill_size,
1215
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1216
    )
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
1248
1249
1250
1251
1252
1253
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
1254
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1255
    )
1256
1257
1258


def write_github_step_summary(content):
1259
1260
1261
1262
    if not os.environ.get("GITHUB_STEP_SUMMARY"):
        logging.warning("GITHUB_STEP_SUMMARY environment variable not set")
        return

1263
1264
    with open(os.environ["GITHUB_STEP_SUMMARY"], "a") as f:
        f.write(content)
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339


def run_logprob_check(self: unittest.TestCase, arg: Tuple):
    (
        input_len,
        output_len,
        temperature,
        logprob_start_len,
        return_logprob,
        top_logprobs_num,
    ) = arg
    input_ids = list(range(input_len))

    response = requests.post(
        self.base_url + "/generate",
        json={
            "input_ids": input_ids,
            "sampling_params": {
                "temperature": temperature,
                "max_new_tokens": output_len,
                "ignore_eos": True,
            },
            "return_logprob": return_logprob,
            "logprob_start_len": logprob_start_len,
            "top_logprobs_num": top_logprobs_num,
        },
    )
    response_json = response.json()

    res = response_json
    self.assertEqual(res["meta_info"]["prompt_tokens"], input_len)
    self.assertEqual(res["meta_info"]["completion_tokens"], output_len)

    # Test the number of tokens are correct
    if return_logprob:
        self.assertEqual(
            len(res["meta_info"]["input_token_logprobs"]) + logprob_start_len,
            res["meta_info"]["prompt_tokens"],
        )
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), output_len)

        if top_logprobs_num:
            self.assertEqual(
                len(res["meta_info"]["input_top_logprobs"]) + logprob_start_len,
                res["meta_info"]["prompt_tokens"],
            )
            self.assertEqual(len(res["meta_info"]["output_top_logprobs"]), output_len)

            for i in range(output_len):
                self.assertEqual(
                    len(res["meta_info"]["output_top_logprobs"][i]),
                    top_logprobs_num,
                )

                # Test the top-1 tokens are the same as output tokens if temperature == 0
                if temperature == 0:
                    rank = 0
                    while rank < len(res["meta_info"]["output_top_logprobs"][i]):
                        try:
                            self.assertListEqual(
                                res["meta_info"]["output_token_logprobs"][i],
                                res["meta_info"]["output_top_logprobs"][i][rank],
                            )
                            break
                        except AssertionError:
                            # There's a tie. Allow the second item in this case.
                            if (
                                res["meta_info"]["output_top_logprobs"][i][rank][0]
                                == res["meta_info"]["output_top_logprobs"][i][rank + 1][
                                    0
                                ]
                            ):
                                rank += 1
                            else:
                                raise
1340
1341


1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
def send_generate_requests(base_url: str, num_requests: int) -> List[str]:
    """Sends generate request serially and returns status codes. Max concurrency is 1."""

    def generate():
        prompt = """
        System: You are a helpful assistant.
        User: What is the capital of France?
        Assistant: The capital of France is
        """
        response = requests.post(
            f"{base_url}/generate",
            json={
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 50,
                },
            },
        )
        return response.status_code

    return [generate() for _ in range(num_requests)]


async def send_concurrent_generate_requests(
    base_url: str, num_requests: int
) -> List[str]:
    """Sends generate request concurrently and returns status codes. Max concurrency is num_requests."""

    async def async_generate():
        async with aiohttp.ClientSession() as session:
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """
            async with session.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 50,
                    },
                },
            ) as response:
                return response.status

    tasks = [asyncio.create_task(async_generate()) for _ in range(num_requests)]
    return await asyncio.gather(*tasks)


1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
async def send_concurrent_generate_requests_with_custom_params(
    base_url: str,
    custom_params: List[dict[str, Any]],
) -> Tuple[int, Any]:
    """Sends generate request concurrently with custom parameters and returns status code and response json tuple. Max concurrency is num_requests."""

    base_payload = {
        "text": """
                System: You are a helpful assistant.
                User: What is the capital of France?
                Assistant: The capital of France is
                """,
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 50,
        },
    }

    async def async_generate_with_priority(req):
        async with aiohttp.ClientSession() as session:
            async with session.post(
                f"{base_url}/generate",
                json=req,
            ) as response:
                resp_json = await response.json()
                return (response.status, resp_json)

    tasks = []
    for c in custom_params:
        req = base_payload.copy()
        req.update(c)
        tasks.append(asyncio.create_task(async_generate_with_priority(req)))
    return await asyncio.gather(*tasks)


1429
1430
class CustomTestCase(unittest.TestCase):
    def _callTestMethod(self, method):
1431
        max_retry = int(
Yineng Zhang's avatar
Yineng Zhang committed
1432
            os.environ.get("SGLANG_TEST_MAX_RETRY", "1" if is_in_ci() else "0")
1433
        )
1434
1435
1436
        retry(
            lambda: super(CustomTestCase, self)._callTestMethod(method),
            max_retry=max_retry,
1437
        )
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469


def dump_bench_raw_result(
    path: str,
    states,
    preds,
    labels,
):
    if not path:
        return

    rows = []
    for i in range(len(states)):
        state = states[i]
        output = state["answer"]
        prompt = _ensure_remove_suffix(state.text(), output)
        rows.append(
            dict(
                prompt_id=i,
                prompt=prompt,
                output=output,
                correct=bool(preds[i] == labels[i]),
            )
        )

    print(f"BenchRawResultDumper save results to {path}")
    Path(path).write_text("\n".join(json.dumps(row) for row in rows))


def _ensure_remove_suffix(text: str, suffix: str):
    assert text.endswith(suffix)
    return text.removesuffix(suffix)