test_utils.py 40.3 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Lifu Huang's avatar
Lifu Huang committed
4
import asyncio
5
import copy
6
import json
7
import logging
8
import os
9
import random
YanbingJiang's avatar
YanbingJiang committed
10
import re
11
import subprocess
12
import threading
13
import time
14
import unittest
15
from concurrent.futures import ThreadPoolExecutor
Byron Hsu's avatar
Byron Hsu committed
16
from dataclasses import dataclass
Liangsheng Yin's avatar
Liangsheng Yin committed
17
from functools import partial
18
from pathlib import Path
19
from types import SimpleNamespace
Lifu Huang's avatar
Lifu Huang committed
20
from typing import Awaitable, Callable, List, Optional, Tuple
Liangsheng Yin's avatar
Liangsheng Yin committed
21

22
import aiohttp
Lianmin Zheng's avatar
Lianmin Zheng committed
23
24
import numpy as np
import requests
25
26
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
27

28
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
29
from sglang.global_config import global_config
30
31
from sglang.srt.utils import (
    get_bool_env_var,
32
    get_device,
33
34
35
36
    is_port_available,
    kill_process_tree,
    retry,
)
37
from sglang.test.run_eval import run_eval
38
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
39

Lianmin Zheng's avatar
Lianmin Zheng committed
40
41
42
# General test models
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
43
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_BASE = "meta-llama/Llama-3.2-1B"
Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46
47
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST = "Qwen/Qwen1.5-MoE-A2.7B"

# MLA test models
woodx's avatar
woodx committed
48
49
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST = "cross-encoder/ms-marco-MiniLM-L6-v2"
Lianmin Zheng's avatar
Lianmin Zheng committed
50
51
52
53
54
55
56
57
58
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_TEST_MLA = "lmsys/sglang-ci-dsv3-test"
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN = "lmsys/sglang-ci-dsv3-test-NextN"

# FP8 models
DEFAULT_MODEL_NAME_FOR_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_ACCURACY_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST_FP8 = (
HandH1998's avatar
HandH1998 committed
59
60
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic"
)
Lianmin Zheng's avatar
Lianmin Zheng committed
61
DEFAULT_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_FP8 = (
62
63
64
    "nvidia/Llama-3.1-8B-Instruct-FP8"
)

Lianmin Zheng's avatar
Lianmin Zheng committed
65
66
67
# EAGLE
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST = "meta-llama/Llama-2-7b-chat-hf"
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST = "lmsys/sglang-EAGLE-llama2-chat-7B"
Stefan He's avatar
Stefan He committed
68
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3 = "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B"
Lianmin Zheng's avatar
Lianmin Zheng committed
69
70

# Other use cases
Stefan He's avatar
Stefan He committed
71
72
73
DEFAULT_MODEL_NAME_FOR_TEST_LOCAL_ATTENTION = (
    "meta-llama/Llama-4-Scout-17B-16E-Instruct"
)
74
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
Xihuai Wang's avatar
Xihuai Wang committed
75
DEFAULT_REASONING_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
Jinyan Chen's avatar
Jinyan Chen committed
76
DEFAULT_DEEPPEP_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-V3-0324"
77
78
79
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST = (
    "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
)
80
DEFAULT_ENABLE_THINKING_MODEL_NAME_FOR_TEST = "Qwen/Qwen3-30B-A3B"
81
DEFAULT_DEEPSEEK_W4AFP8_MODEL_FOR_TEST = "Barrrrry/DeepSeek-R1-W4AFP8"
Lianmin Zheng's avatar
Lianmin Zheng committed
82
83

# Nightly tests
84
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
85
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
86
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
87
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,zai-org/GLM-4.5-Air-FP8"
88
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4,hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
89
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN = "Qwen/Qwen2.5-1.5B-Instruct"
90
DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST = "Qwen/Qwen2.5-VL-3B-Instruct"
91
92
93
94

DEFAULT_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
DEFAULT_VIDEO_URL = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"

95
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
Lianmin Zheng's avatar
Lianmin Zheng committed
96

97
98
99

def is_in_ci():
    """Return whether it is in CI runner."""
100
    return get_bool_env_var("SGLANG_IS_IN_CI")
101
102


103
104
105
106
107
def is_in_amd_ci():
    """Return whether it is in an AMD CI runner."""
    return get_bool_env_var("SGLANG_AMD_CI")


108
109
110
111
112
113
114
115
116
def _use_cached_default_models(model_repo: str):
    cache_dir = os.getenv("DEFAULT_MODEL_CACHE_DIR")
    if cache_dir and model_repo:
        model_path = os.path.join(cache_dir, model_repo)
        if os.path.isdir(model_path):
            return os.path.abspath(model_path)
    return ""


117
if is_in_ci():
118
119
120
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        5000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
121
else:
122
123
124
125
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        7000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
DEFAULT_URL_FOR_TEST = f"http://127.0.0.1:{DEFAULT_PORT_FOR_SRT_TEST_RUNNER + 1000}"
126

127
128
129
if is_in_amd_ci():
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 3000

Lianmin Zheng's avatar
Lianmin Zheng committed
130

Liangsheng Yin's avatar
Liangsheng Yin committed
131
132
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


148
149
150
151
152
153
154
155
156
157
158
def find_available_port(base_port: int):
    port = base_port + random.randint(100, 1000)
    while True:
        if is_port_available(port):
            return port
        if port < 60000:
            port += 42
        else:
            port -= 43


Liangsheng Yin's avatar
Liangsheng Yin committed
159
160
161
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


178
def call_generate_outlines(
179
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
180
):
Liangsheng Yin's avatar
Liangsheng Yin committed
181
182
    assert url is not None

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
200
201
202
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
258
259
260
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
261
262
263
264
265
266
267
268
269
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
270
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
271
272
273
274
275
276
277
278
279
280
281
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
282
283
284
285
286
287
288
289
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


290
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
291
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
292
293
294
295
296
297
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
298
299
300
301
        choices=[
            "vllm",
            "outlines",
            "lightllm",
302
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
303
304
305
306
            "guidance",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
307
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
308
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
309
310
311
312
313
314
315
316
317
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
318
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
319
320
            "lightllm": 22000,
            "srt-raw": 30000,
321
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
322
323
324
325
326
        }
        args.port = default_port.get(args.backend, None)
    return args


327
328
329
330
331
332
333
334
335
336
337
338
def auto_config_device() -> str:
    """Auto-config available device platform"""

    try:
        device = get_device()
    except (RuntimeError, ImportError) as e:
        print(f"Warning: {e} - Falling back to CPU")
        device = "cpu"

    return device


339
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
340
341
342
343
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
344
345
346
347
348
349
350
    parser.add_argument(
        "--device",
        type=str,
        default="auto",
        choices=["auto", "cuda", "rocm", "cpu"],
        help="Device type (auto/cuda/rocm/cpu). Auto will detect available platforms",
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
351
    parser.add_argument("--result-file", type=str, default="result.jsonl")
352
    parser.add_argument("--raw-result-file", type=str)
Lianmin Zheng's avatar
Lianmin Zheng committed
353
    args = parser.parse_args()
354

Lianmin Zheng's avatar
Lianmin Zheng committed
355
356
357
    return args


358
def select_sglang_backend(args: argparse.Namespace):
359
360
361
    from sglang.lang.backend.openai import OpenAI
    from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint

Lianmin Zheng's avatar
Lianmin Zheng committed
362
363
364
365
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
366
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
367
368
369
370
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
371
372


373
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
374
375
376
377
378
379
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
380
381
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
382
383
384
385
386
387
388
389
390
391
392
393
394
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


395
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


412
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
413
414
415
416
417
418
419
420
421
422
423
424
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


425
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
426
427
428
429
430
431
432
433
434
435
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
436
437


438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
def _get_default_models():
    import inspect

    current_module = inspect.getmodule(_get_default_models)
    default_models = set()
    for name, value in current_module.__dict__.items():
        if (
            isinstance(name, str)
            and "DEFAULT_" in name
            and "MODEL_" in name
            and isinstance(value, str)
        ):
            if "," in value:
                parts = [part.strip() for part in value.split(",")]
                default_models.update(parts)
            else:
                default_models.add(value.strip())
    return json.dumps(list(default_models))


def try_cached_model(model_repo: str):
    model_dir = _use_cached_default_models(model_repo)
    return model_dir if model_dir else model_repo


463
def popen_launch_server(
464
465
466
467
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
468
    other_args: list[str] = [],
469
    env: Optional[dict] = None,
470
    return_stdout_stderr: Optional[tuple] = None,
471
    device: str = "auto",
472
    pd_separated: bool = False,
473
):
474
475
476
477
478
479
480
481
482
483
484
485
486
    """Launch a server process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed
    if device == "auto":
        device = auto_config_device()
        print(f"Auto-configed device: {device}", flush=True)
        other_args = list(other_args)
        other_args += ["--device", str(device)]

487
488
489
    _, host, port = base_url.split(":")
    host = host[2:]

490
    if pd_separated:
491
492
493
494
        command = "sglang.launch_pd_server"
    else:
        command = "sglang.launch_server"

495
496
497
    command = [
        "python3",
        "-m",
498
        command,
499
500
        "--model-path",
        model,
501
        *[str(x) for x in other_args],
502
    ]
Chayenne's avatar
Chayenne committed
503

504
    if pd_separated:
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        command.extend(
            [
                "--lb-host",
                host,
                "--lb-port",
                port,
            ]
        )
    else:
        command.extend(
            [
                "--host",
                host,
                "--port",
                port,
            ]
        )

523
524
525
    if api_key:
        command += ["--api-key", api_key]

526
527
    print(f"command={' '.join(command)}")

528
529
530
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
531
532
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
533
534
535
536
537
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
538

539
    start_time = time.perf_counter()
540
    with requests.Session() as session:
541
        while time.perf_counter() - start_time < timeout:
542
543
544
545
546
547
548
549
550

            return_code = process.poll()
            if return_code is not None:
                # Server failed to start (non-zero exit code) or crashed
                raise Exception(
                    f"Server process exited with code {return_code}. "
                    "Check server logs for errors."
                )

551
552
553
554
555
556
557
558
559
560
561
562
563
            try:
                headers = {
                    "Content-Type": "application/json; charset=utf-8",
                    "Authorization": f"Bearer {api_key}",
                }
                response = session.get(
                    f"{base_url}/health_generate",
                    headers=headers,
                )
                if response.status_code == 200:
                    return process
            except requests.RequestException:
                pass
564
565
566

            return_code = process.poll()
            if return_code is not None:
fzyzcjy's avatar
fzyzcjy committed
567
568
569
                raise Exception(
                    f"Server unexpectedly exits ({return_code=}). Usually there will be error logs describing the cause far above this line."
                )
570

571
            time.sleep(10)
572
573

    kill_process_tree(process.pid)
574
    raise TimeoutError("Server failed to start within the timeout period.")
575
576


577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
def popen_launch_pd_server(
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: list[str] = (),
    env: Optional[dict] = None,
):
    _, host, port = base_url.split(":")
    host = host[2:]

    command = "sglang.launch_server"

    command = [
        "python3",
        "-m",
        command,
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    command.extend(
        [
            "--host",
            host,
            "--port",
            port,
        ]
    )

    if api_key:
        command += ["--api-key", api_key]

    print(f"command={' '.join(command)}")

613
    process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
614

615
    return process
616
617


618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


Byron Hsu's avatar
Byron Hsu committed
642
643
644
645
646
647
648
@dataclass
class TestFile:
    name: str
    estimated_time: float = 60


def run_unittest_files(files: List[TestFile], timeout_per_file: float):
649
    tic = time.perf_counter()
650
651
    success = True

Lianmin Zheng's avatar
Lianmin Zheng committed
652
    for i, file in enumerate(files):
Lianmin Zheng's avatar
Lianmin Zheng committed
653
        filename, estimated_time = file.name, file.estimated_time
654
        process = None
655

Mingyi's avatar
Mingyi committed
656
        def run_one_file(filename):
657
658
            nonlocal process

Mingyi's avatar
Mingyi committed
659
            filename = os.path.join(os.getcwd(), filename)
Lianmin Zheng's avatar
Lianmin Zheng committed
660
            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
661
                f".\n.\nBegin ({i}/{len(files) - 1}):\npython3 {filename}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
662
663
                flush=True,
            )
664
            tic = time.perf_counter()
Lianmin Zheng's avatar
Lianmin Zheng committed
665

Mingyi's avatar
Mingyi committed
666
667
668
669
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
670
            elapsed = time.perf_counter() - tic
Lianmin Zheng's avatar
Lianmin Zheng committed
671
672

            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
673
                f".\n.\nEnd ({i}/{len(files) - 1}):\n{filename=}, {elapsed=:.0f}, {estimated_time=}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
674
675
                flush=True,
            )
Mingyi's avatar
Mingyi committed
676
            return process.returncode
677
678

        try:
Mingyi's avatar
Mingyi committed
679
680
681
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
682
683
684
            assert (
                ret_code == 0
            ), f"expected return code 0, but {filename} returned {ret_code}"
685
        except TimeoutError:
686
            kill_process_tree(process.pid)
687
688
            time.sleep(5)
            print(
689
690
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
691
            )
Mingyi's avatar
Mingyi committed
692
693
            success = False
            break
694
695

    if success:
696
        print(f"Success. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
697
    else:
698
        print(f"Fail. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
699
700

    return 0 if success else -1
701
702
703
704


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
705
706


707
708
709
710
711
712
def get_benchmark_args(
    base_url="",
    dataset_name="",
    dataset_path="",
    tokenizer="",
    num_prompts=500,
713
    sharegpt_output_len=None,
714
715
    random_input_len=4096,
    random_output_len=2048,
716
    sharegpt_context_len=None,
717
718
719
    request_rate=float("inf"),
    disable_stream=False,
    disable_ignore_eos=False,
720
    seed: int = 0,
721
    device="auto",
722
    pd_separated: bool = False,
Lifu Huang's avatar
Lifu Huang committed
723
    lora_name=None,
724
725
726
727
728
729
730
731
732
733
734
):
    return SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
        dataset_name=dataset_name,
        dataset_path=dataset_path,
        model=None,
        tokenizer=tokenizer,
        num_prompts=num_prompts,
735
736
        sharegpt_output_len=sharegpt_output_len,
        sharegpt_context_len=sharegpt_context_len,
737
738
739
740
741
742
743
744
745
        random_input_len=random_input_len,
        random_output_len=random_output_len,
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        output_file=None,
        disable_tqdm=False,
        disable_stream=disable_stream,
        return_logprob=False,
746
        seed=seed,
747
748
749
750
        disable_ignore_eos=disable_ignore_eos,
        extra_request_body=None,
        apply_chat_template=False,
        profile=None,
Lifu Huang's avatar
Lifu Huang committed
751
        lora_name=lora_name,
752
        prompt_suffix="",
753
        device=device,
754
        pd_separated=pd_separated,
755
756
757
    )


758
759
760
761
762
763
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
764
765
    dataset_path="",
    tokenizer=None,
766
767
    random_input_len=4096,
    random_output_len=2048,
768
    sharegpt_context_len=None,
769
    disable_stream=False,
770
    disable_ignore_eos=False,
771
    need_warmup=False,
772
    seed: int = 0,
773
    device="auto",
Lifu Huang's avatar
Lifu Huang committed
774
775
    background_task: Optional[Callable[[str, asyncio.Event], Awaitable[None]]] = None,
    lora_name: Optional[str] = None,
776
):
777
778
    if device == "auto":
        device = auto_config_device()
779
780
781
782
783
784
785
786
787
788
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
789
    args = get_benchmark_args(
790
        base_url=base_url,
791
        dataset_name=dataset_name,
792
793
        dataset_path=dataset_path,
        tokenizer=tokenizer,
794
        num_prompts=num_prompts,
795
796
        random_input_len=random_input_len,
        random_output_len=random_output_len,
797
        sharegpt_context_len=sharegpt_context_len,
798
        request_rate=request_rate,
799
        disable_stream=disable_stream,
800
        disable_ignore_eos=disable_ignore_eos,
801
        seed=seed,
802
        device=device,
Lifu Huang's avatar
Lifu Huang committed
803
        lora_name=lora_name,
804
805
    )

Lifu Huang's avatar
Lifu Huang committed
806
    async def _run():
807
808
809
        if need_warmup:
            warmup_args = copy.deepcopy(args)
            warmup_args.num_prompts = 16
Lifu Huang's avatar
Lifu Huang committed
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
            await asyncio.to_thread(run_benchmark, warmup_args)

        start_event = asyncio.Event()
        stop_event = asyncio.Event()
        task_handle = (
            asyncio.create_task(background_task(base_url, start_event, stop_event))
            if background_task
            else None
        )

        try:
            start_event.set()
            result = await asyncio.to_thread(run_benchmark, args)
        finally:
            if task_handle:
                stop_event.set()
                await task_handle

        return result

    try:
        res = asyncio.run(_run())
832
    finally:
833
        kill_process_tree(process.pid)
834
835
836

    assert res["completed"] == num_prompts
    return res
837
838


839
840
841
842
843
844
def run_bench_serving_multi(
    model,
    base_url,
    other_server_args,
    benchmark_args,
    need_warmup=False,
845
    pd_separated=False,
846
847
848
849
850
851
852
):
    # Launch the server
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
853
        pd_separated=pd_separated,
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
    )

    # run benchmark for all
    res_l = []
    try:
        for args in benchmark_args:
            if need_warmup:
                warmup_args = copy.deepcopy(args)
                warmup_args.num_prompts = 16
                run_benchmark(warmup_args)

            res = run_benchmark(args)
            res_l.append((args, res))
    finally:
        kill_process_tree(process.pid)

    return res_l


873
def run_bench_one_batch(model, other_args):
874
875
876
877
878
879
880
881
882
883
884
885
    """Launch a offline process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed

    device = auto_config_device()
    print(f"Auto-configed device: {device}", flush=True)
    other_args += ["--device", str(device)]

886
887
888
    command = [
        "python3",
        "-m",
889
        "sglang.bench_one_batch",
890
891
892
893
894
895
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
896
        *[str(x) for x in other_args],
897
    ]
saienduri's avatar
saienduri committed
898
899
    if model is not None:
        command += ["--model-path", model]
900
901
902
903
904
905
906
907
908
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

YanbingJiang's avatar
YanbingJiang committed
909
910
911
912
913
914
915
916
917
918
919
920
921
        # Return prefill_latency, decode_throughput, decode_latency
        prefill_line = output.split("\n")[-9]
        decode_line = output.split("\n")[-3]
        pattern = (
            r"latency: (?P<latency>\d+\.\d+).*?throughput:\s*(?P<throughput>\d+\.\d+)"
        )
        match = re.search(pattern, prefill_line)
        if match:
            prefill_latency = float(match.group("latency"))
        match = re.search(pattern, decode_line)
        if match:
            decode_latency = float(match.group("latency"))
            decode_throughput = float(match.group("throughput"))
922
    finally:
923
        kill_process_tree(process.pid)
924

YanbingJiang's avatar
YanbingJiang committed
925
    return prefill_latency, decode_throughput, decode_latency
926
927


928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
def run_bench_offline_throughput(model, other_args):
    command = [
        "python3",
        "-m",
        "sglang.bench_offline_throughput",
        "--num-prompts",
        "1",
        "--dataset-name",
        "random",
        "--random-input-len",
        "256",
        "--random-output-len",
        "256",
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    print(f"{command=}")
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        output_throughput = -1
        for line in output.split("\n"):
            if "Last generation throughput (tok/s):" in line:
                output_throughput = float(line.split(":")[-1])
    finally:
        kill_process_tree(process.pid)

    return output_throughput


966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
def run_bench_one_batch_server(
    model,
    base_url,
    server_args,
    bench_args,
    other_server_args,
    simulate_spec_acc_lens=None,
):
    from sglang.bench_one_batch_server import run_benchmark

    if simulate_spec_acc_lens is not None:
        env = {**os.environ, "SIMULATE_ACC_LEN": str(simulate_spec_acc_lens)}
    else:
        env = None

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
        env=env,
    )
    try:
        run_benchmark(server_args=server_args, bench_args=bench_args)
    finally:
        kill_process_tree(process.pid)


994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
1026
1027


1028
1029
STDERR_FILENAME = "/tmp/stderr.txt"
STDOUT_FILENAME = "/tmp/stdout.txt"
1030
1031


1032
def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
1033
    """Print the output in real time with another thread."""
1034
    while not os.path.exists(filename):
1035
        time.sleep(0.01)
1036

1037
1038
    pt = 0
    while pt >= 0:
1039
        if pt > 0 and not os.path.exists(filename):
1040
            break
1041
1042
1043
1044
1045
        try:
            lines = open(filename).readlines()
        except FileNotFoundError:
            print(f"{pt=}, {os.path.exists(filename)=}")
            raise
1046
1047
        for line in lines[pt:]:
            print(line, end="", flush=True)
1048
            output_lines.append(line)
1049
            pt += 1
1050
        time.sleep(0.1)
1051
1052


1053
1054
def run_and_check_memory_leak(
    workload_func,
1055
    disable_radix_cache,
1056
    enable_mixed_chunk,
1057
    disable_overlap,
1058
    chunked_prefill_size,
1059
    assert_has_abort,
1060
):
1061
1062
1063
1064
1065
1066
    other_args = [
        "--chunked-prefill-size",
        str(chunked_prefill_size),
        "--log-level",
        "debug",
    ]
1067
1068
1069
1070
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
1071
1072
    if disable_overlap:
        other_args += ["--disable-overlap-schedule"]
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

1094
1095
    # Run the workload
    workload_func(base_url, model)
1096
1097

    # Clean up everything
1098
    kill_process_tree(process.pid)
1099
1100
    stdout.close()
    stderr.close()
1101
1102
1103
1104
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
Lianmin Zheng's avatar
Lianmin Zheng committed
1105
    kill_process_tree(process.pid)
1106
1107
1108
1109
1110
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
1111
    has_abort = False
1112
    for line in output_lines:
Lianmin Zheng's avatar
Lianmin Zheng committed
1113
        if "Uvicorn running" in line:
1114
1115
1116
            has_new_server = True
        if "leak" in line:
            has_leak = True
1117
1118
        if "Abort" in line:
            has_abort = True
1119
1120

    assert has_new_server
1121
    assert not has_leak
1122
1123
    if assert_has_abort:
        assert has_abort
1124
1125


1126
1127
1128
1129
def run_command_and_capture_output(command, env: Optional[dict] = None):
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = subprocess.Popen(
1130
        command, stdout=stdout, stderr=stdout, env=env, text=True
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines, STDOUT_FILENAME))
    t.start()

    # Join the process
    process.wait()

    stdout.close()
    stderr.close()
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
    kill_process_tree(process.pid)
    t.join()

    return output_lines


1153
1154
1155
def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
1156
    disable_overlap=False,
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
1171
            assert metrics["score"] >= 0.65, f"{metrics=}"
1172
1173
1174
        finally:
            pass

Chayenne's avatar
Chayenne committed
1175
1176
1177
1178
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
1179
        disable_overlap,
Chayenne's avatar
Chayenne committed
1180
        chunked_prefill_size,
1181
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1182
    )
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
1214
1215
1216
1217
1218
1219
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
1220
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1221
    )
1222
1223
1224


def write_github_step_summary(content):
1225
1226
1227
1228
    if not os.environ.get("GITHUB_STEP_SUMMARY"):
        logging.warning("GITHUB_STEP_SUMMARY environment variable not set")
        return

1229
1230
    with open(os.environ["GITHUB_STEP_SUMMARY"], "a") as f:
        f.write(content)
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305


def run_logprob_check(self: unittest.TestCase, arg: Tuple):
    (
        input_len,
        output_len,
        temperature,
        logprob_start_len,
        return_logprob,
        top_logprobs_num,
    ) = arg
    input_ids = list(range(input_len))

    response = requests.post(
        self.base_url + "/generate",
        json={
            "input_ids": input_ids,
            "sampling_params": {
                "temperature": temperature,
                "max_new_tokens": output_len,
                "ignore_eos": True,
            },
            "return_logprob": return_logprob,
            "logprob_start_len": logprob_start_len,
            "top_logprobs_num": top_logprobs_num,
        },
    )
    response_json = response.json()

    res = response_json
    self.assertEqual(res["meta_info"]["prompt_tokens"], input_len)
    self.assertEqual(res["meta_info"]["completion_tokens"], output_len)

    # Test the number of tokens are correct
    if return_logprob:
        self.assertEqual(
            len(res["meta_info"]["input_token_logprobs"]) + logprob_start_len,
            res["meta_info"]["prompt_tokens"],
        )
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), output_len)

        if top_logprobs_num:
            self.assertEqual(
                len(res["meta_info"]["input_top_logprobs"]) + logprob_start_len,
                res["meta_info"]["prompt_tokens"],
            )
            self.assertEqual(len(res["meta_info"]["output_top_logprobs"]), output_len)

            for i in range(output_len):
                self.assertEqual(
                    len(res["meta_info"]["output_top_logprobs"][i]),
                    top_logprobs_num,
                )

                # Test the top-1 tokens are the same as output tokens if temperature == 0
                if temperature == 0:
                    rank = 0
                    while rank < len(res["meta_info"]["output_top_logprobs"][i]):
                        try:
                            self.assertListEqual(
                                res["meta_info"]["output_token_logprobs"][i],
                                res["meta_info"]["output_top_logprobs"][i][rank],
                            )
                            break
                        except AssertionError:
                            # There's a tie. Allow the second item in this case.
                            if (
                                res["meta_info"]["output_top_logprobs"][i][rank][0]
                                == res["meta_info"]["output_top_logprobs"][i][rank + 1][
                                    0
                                ]
                            ):
                                rank += 1
                            else:
                                raise
1306
1307


1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
def send_generate_requests(base_url: str, num_requests: int) -> List[str]:
    """Sends generate request serially and returns status codes. Max concurrency is 1."""

    def generate():
        prompt = """
        System: You are a helpful assistant.
        User: What is the capital of France?
        Assistant: The capital of France is
        """
        response = requests.post(
            f"{base_url}/generate",
            json={
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 50,
                },
            },
        )
        return response.status_code

    return [generate() for _ in range(num_requests)]


async def send_concurrent_generate_requests(
    base_url: str, num_requests: int
) -> List[str]:
    """Sends generate request concurrently and returns status codes. Max concurrency is num_requests."""

    async def async_generate():
        async with aiohttp.ClientSession() as session:
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """
            async with session.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 50,
                    },
                },
            ) as response:
                return response.status

    tasks = [asyncio.create_task(async_generate()) for _ in range(num_requests)]
    return await asyncio.gather(*tasks)


1360
1361
class CustomTestCase(unittest.TestCase):
    def _callTestMethod(self, method):
1362
        max_retry = int(
Yineng Zhang's avatar
Yineng Zhang committed
1363
            os.environ.get("SGLANG_TEST_MAX_RETRY", "1" if is_in_ci() else "0")
1364
        )
1365
1366
1367
        retry(
            lambda: super(CustomTestCase, self)._callTestMethod(method),
            max_retry=max_retry,
1368
        )
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400


def dump_bench_raw_result(
    path: str,
    states,
    preds,
    labels,
):
    if not path:
        return

    rows = []
    for i in range(len(states)):
        state = states[i]
        output = state["answer"]
        prompt = _ensure_remove_suffix(state.text(), output)
        rows.append(
            dict(
                prompt_id=i,
                prompt=prompt,
                output=output,
                correct=bool(preds[i] == labels[i]),
            )
        )

    print(f"BenchRawResultDumper save results to {path}")
    Path(path).write_text("\n".join(json.dumps(row) for row in rows))


def _ensure_remove_suffix(text: str, suffix: str):
    assert text.endswith(suffix)
    return text.removesuffix(suffix)