test_utils.py 38.5 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Lifu Huang's avatar
Lifu Huang committed
4
import asyncio
5
import copy
6
import json
7
import logging
8
import os
9
import random
YanbingJiang's avatar
YanbingJiang committed
10
import re
11
import subprocess
12
import threading
13
import time
14
import unittest
15
from concurrent.futures import ThreadPoolExecutor
Byron Hsu's avatar
Byron Hsu committed
16
from dataclasses import dataclass
Liangsheng Yin's avatar
Liangsheng Yin committed
17
from functools import partial
18
from pathlib import Path
19
from types import SimpleNamespace
Lifu Huang's avatar
Lifu Huang committed
20
from typing import Awaitable, Callable, List, Optional, Tuple
Liangsheng Yin's avatar
Liangsheng Yin committed
21

Lianmin Zheng's avatar
Lianmin Zheng committed
22
23
import numpy as np
import requests
24
25
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
26

27
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
28
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
29
30
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
31
from sglang.lang.interpreter import ProgramState
32
33
from sglang.srt.utils import (
    get_bool_env_var,
34
    get_device,
35
36
37
38
    is_port_available,
    kill_process_tree,
    retry,
)
39
from sglang.test.run_eval import run_eval
40
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
41

Lianmin Zheng's avatar
Lianmin Zheng committed
42
43
44
# General test models
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
45
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_BASE = "meta-llama/Llama-3.2-1B"
Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
48
49
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST = "Qwen/Qwen1.5-MoE-A2.7B"

# MLA test models
woodx's avatar
woodx committed
50
51
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST = "cross-encoder/ms-marco-MiniLM-L6-v2"
Lianmin Zheng's avatar
Lianmin Zheng committed
52
53
54
55
56
57
58
59
60
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_TEST_MLA = "lmsys/sglang-ci-dsv3-test"
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN = "lmsys/sglang-ci-dsv3-test-NextN"

# FP8 models
DEFAULT_MODEL_NAME_FOR_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_ACCURACY_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST_FP8 = (
HandH1998's avatar
HandH1998 committed
61
62
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic"
)
Lianmin Zheng's avatar
Lianmin Zheng committed
63
DEFAULT_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_FP8 = (
64
65
66
    "nvidia/Llama-3.1-8B-Instruct-FP8"
)

Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
69
# EAGLE
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST = "meta-llama/Llama-2-7b-chat-hf"
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST = "lmsys/sglang-EAGLE-llama2-chat-7B"
Stefan He's avatar
Stefan He committed
70
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3 = "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B"
Lianmin Zheng's avatar
Lianmin Zheng committed
71
72

# Other use cases
Stefan He's avatar
Stefan He committed
73
74
75
DEFAULT_MODEL_NAME_FOR_TEST_LOCAL_ATTENTION = (
    "meta-llama/Llama-4-Scout-17B-16E-Instruct"
)
76
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
Xihuai Wang's avatar
Xihuai Wang committed
77
DEFAULT_REASONING_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
Jinyan Chen's avatar
Jinyan Chen committed
78
DEFAULT_DEEPPEP_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-V3-0324"
79
80
81
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST = (
    "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
)
82
DEFAULT_ENABLE_THINKING_MODEL_NAME_FOR_TEST = "Qwen/Qwen3-30B-A3B"
Lianmin Zheng's avatar
Lianmin Zheng committed
83
84

# Nightly tests
85
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
86
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
87
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
Ke Bao's avatar
Ke Bao committed
88
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
89
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4,hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
90
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN = "Qwen/Qwen2.5-1.5B-Instruct"
91
DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST = "Qwen/Qwen2.5-VL-3B-Instruct"
92
93
94
95

DEFAULT_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
DEFAULT_VIDEO_URL = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"

96
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
Lianmin Zheng's avatar
Lianmin Zheng committed
97

98
99
100

def is_in_ci():
    """Return whether it is in CI runner."""
101
    return get_bool_env_var("SGLANG_IS_IN_CI")
102
103


104
105
106
107
108
def is_in_amd_ci():
    """Return whether it is in an AMD CI runner."""
    return get_bool_env_var("SGLANG_AMD_CI")


109
110
111
112
113
114
115
116
117
def _use_cached_default_models(model_repo: str):
    cache_dir = os.getenv("DEFAULT_MODEL_CACHE_DIR")
    if cache_dir and model_repo:
        model_path = os.path.join(cache_dir, model_repo)
        if os.path.isdir(model_path):
            return os.path.abspath(model_path)
    return ""


118
if is_in_ci():
119
120
121
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        5000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
122
else:
123
124
125
126
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        7000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
DEFAULT_URL_FOR_TEST = f"http://127.0.0.1:{DEFAULT_PORT_FOR_SRT_TEST_RUNNER + 1000}"
127

128
129
130
if is_in_amd_ci():
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 3000

Lianmin Zheng's avatar
Lianmin Zheng committed
131

Liangsheng Yin's avatar
Liangsheng Yin committed
132
133
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


149
150
151
152
153
154
155
156
157
158
159
def find_available_port(base_port: int):
    port = base_port + random.randint(100, 1000)
    while True:
        if is_port_available(port):
            return port
        if port < 60000:
            port += 42
        else:
            port -= 43


Liangsheng Yin's avatar
Liangsheng Yin committed
160
161
162
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


179
def call_generate_outlines(
180
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
181
):
Liangsheng Yin's avatar
Liangsheng Yin committed
182
183
    assert url is not None

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
201
202
203
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
259
260
261
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
262
263
264
265
266
267
268
269
270
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
271
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
272
273
274
275
276
277
278
279
280
281
282
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
283
284
285
286
287
288
289
290
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


291
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
292
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
293
294
295
296
297
298
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
299
300
301
302
        choices=[
            "vllm",
            "outlines",
            "lightllm",
303
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
304
305
306
307
            "guidance",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
308
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
309
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
310
311
312
313
314
315
316
317
318
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
319
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
320
321
            "lightllm": 22000,
            "srt-raw": 30000,
322
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
323
324
325
326
327
        }
        args.port = default_port.get(args.backend, None)
    return args


328
329
330
331
332
333
334
335
336
337
338
339
def auto_config_device() -> str:
    """Auto-config available device platform"""

    try:
        device = get_device()
    except (RuntimeError, ImportError) as e:
        print(f"Warning: {e} - Falling back to CPU")
        device = "cpu"

    return device


340
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
341
342
343
344
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
345
346
347
348
349
350
351
    parser.add_argument(
        "--device",
        type=str,
        default="auto",
        choices=["auto", "cuda", "rocm", "cpu"],
        help="Device type (auto/cuda/rocm/cpu). Auto will detect available platforms",
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
352
    parser.add_argument("--result-file", type=str, default="result.jsonl")
353
    parser.add_argument("--raw-result-file", type=str)
Lianmin Zheng's avatar
Lianmin Zheng committed
354
    args = parser.parse_args()
355

Lianmin Zheng's avatar
Lianmin Zheng committed
356
357
358
    return args


359
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
360
361
362
363
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
364
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
365
366
367
368
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
369
370


371
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
372
373
374
375
376
377
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
378
379
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
380
381
382
383
384
385
386
387
388
389
390
391
392
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


393
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


410
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
411
412
413
414
415
416
417
418
419
420
421
422
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


423
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
424
425
426
427
428
429
430
431
432
433
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
434
435


436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
def _get_default_models():
    import inspect

    current_module = inspect.getmodule(_get_default_models)
    default_models = set()
    for name, value in current_module.__dict__.items():
        if (
            isinstance(name, str)
            and "DEFAULT_" in name
            and "MODEL_" in name
            and isinstance(value, str)
        ):
            if "," in value:
                parts = [part.strip() for part in value.split(",")]
                default_models.update(parts)
            else:
                default_models.add(value.strip())
    return json.dumps(list(default_models))


def try_cached_model(model_repo: str):
    model_dir = _use_cached_default_models(model_repo)
    return model_dir if model_dir else model_repo


461
def popen_launch_server(
462
463
464
465
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
466
    other_args: list[str] = [],
467
    env: Optional[dict] = None,
468
    return_stdout_stderr: Optional[tuple] = None,
469
    device: str = "auto",
470
    pd_separated: bool = False,
471
):
472
473
474
475
476
477
478
479
480
481
482
483
484
    """Launch a server process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed
    if device == "auto":
        device = auto_config_device()
        print(f"Auto-configed device: {device}", flush=True)
        other_args = list(other_args)
        other_args += ["--device", str(device)]

485
486
487
    _, host, port = base_url.split(":")
    host = host[2:]

488
    if pd_separated:
489
490
491
492
        command = "sglang.launch_pd_server"
    else:
        command = "sglang.launch_server"

493
494
495
    command = [
        "python3",
        "-m",
496
        command,
497
498
        "--model-path",
        model,
499
        *[str(x) for x in other_args],
500
    ]
Chayenne's avatar
Chayenne committed
501

502
    if pd_separated:
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        command.extend(
            [
                "--lb-host",
                host,
                "--lb-port",
                port,
            ]
        )
    else:
        command.extend(
            [
                "--host",
                host,
                "--port",
                port,
            ]
        )

521
522
523
    if api_key:
        command += ["--api-key", api_key]

524
525
    print(f"command={' '.join(command)}")

526
527
528
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
529
530
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
531
532
533
534
535
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
536

537
    start_time = time.perf_counter()
538
    with requests.Session() as session:
539
        while time.perf_counter() - start_time < timeout:
540
541
542
543
544
545
546
547
548

            return_code = process.poll()
            if return_code is not None:
                # Server failed to start (non-zero exit code) or crashed
                raise Exception(
                    f"Server process exited with code {return_code}. "
                    "Check server logs for errors."
                )

549
550
551
552
553
554
555
556
557
558
559
560
561
            try:
                headers = {
                    "Content-Type": "application/json; charset=utf-8",
                    "Authorization": f"Bearer {api_key}",
                }
                response = session.get(
                    f"{base_url}/health_generate",
                    headers=headers,
                )
                if response.status_code == 200:
                    return process
            except requests.RequestException:
                pass
562
563
564

            return_code = process.poll()
            if return_code is not None:
fzyzcjy's avatar
fzyzcjy committed
565
566
567
                raise Exception(
                    f"Server unexpectedly exits ({return_code=}). Usually there will be error logs describing the cause far above this line."
                )
568

569
            time.sleep(10)
570
571

    kill_process_tree(process.pid)
572
    raise TimeoutError("Server failed to start within the timeout period.")
573
574


575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
def popen_launch_pd_server(
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: list[str] = (),
    env: Optional[dict] = None,
):
    _, host, port = base_url.split(":")
    host = host[2:]

    command = "sglang.launch_server"

    command = [
        "python3",
        "-m",
        command,
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    command.extend(
        [
            "--host",
            host,
            "--port",
            port,
        ]
    )

    if api_key:
        command += ["--api-key", api_key]

    print(f"command={' '.join(command)}")

611
    process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
612

613
    return process
614
615


616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


Byron Hsu's avatar
Byron Hsu committed
640
641
642
643
644
645
646
@dataclass
class TestFile:
    name: str
    estimated_time: float = 60


def run_unittest_files(files: List[TestFile], timeout_per_file: float):
647
    tic = time.perf_counter()
648
649
    success = True

Lianmin Zheng's avatar
Lianmin Zheng committed
650
    for i, file in enumerate(files):
Lianmin Zheng's avatar
Lianmin Zheng committed
651
        filename, estimated_time = file.name, file.estimated_time
652
        process = None
653

Mingyi's avatar
Mingyi committed
654
        def run_one_file(filename):
655
656
            nonlocal process

Mingyi's avatar
Mingyi committed
657
            filename = os.path.join(os.getcwd(), filename)
Lianmin Zheng's avatar
Lianmin Zheng committed
658
            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
659
                f".\n.\nBegin ({i}/{len(files) - 1}):\npython3 {filename}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
660
661
                flush=True,
            )
662
            tic = time.perf_counter()
Lianmin Zheng's avatar
Lianmin Zheng committed
663

Mingyi's avatar
Mingyi committed
664
665
666
667
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
668
            elapsed = time.perf_counter() - tic
Lianmin Zheng's avatar
Lianmin Zheng committed
669
670

            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
671
                f".\n.\nEnd ({i}/{len(files) - 1}):\n{filename=}, {elapsed=:.0f}, {estimated_time=}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
672
673
                flush=True,
            )
Mingyi's avatar
Mingyi committed
674
            return process.returncode
675
676

        try:
Mingyi's avatar
Mingyi committed
677
678
679
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
680
681
682
            assert (
                ret_code == 0
            ), f"expected return code 0, but {filename} returned {ret_code}"
683
        except TimeoutError:
684
            kill_process_tree(process.pid)
685
686
            time.sleep(5)
            print(
687
688
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
689
            )
Mingyi's avatar
Mingyi committed
690
691
            success = False
            break
692
693

    if success:
694
        print(f"Success. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
695
    else:
696
        print(f"Fail. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
697
698

    return 0 if success else -1
699
700
701
702


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
703
704


705
706
707
708
709
710
def get_benchmark_args(
    base_url="",
    dataset_name="",
    dataset_path="",
    tokenizer="",
    num_prompts=500,
711
    sharegpt_output_len=None,
712
713
    random_input_len=4096,
    random_output_len=2048,
714
    sharegpt_context_len=None,
715
716
717
    request_rate=float("inf"),
    disable_stream=False,
    disable_ignore_eos=False,
718
    seed: int = 0,
719
    device="auto",
720
    pd_separated: bool = False,
Lifu Huang's avatar
Lifu Huang committed
721
    lora_name=None,
722
723
724
725
726
727
728
729
730
731
732
):
    return SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
        dataset_name=dataset_name,
        dataset_path=dataset_path,
        model=None,
        tokenizer=tokenizer,
        num_prompts=num_prompts,
733
734
        sharegpt_output_len=sharegpt_output_len,
        sharegpt_context_len=sharegpt_context_len,
735
736
737
738
739
740
741
742
743
        random_input_len=random_input_len,
        random_output_len=random_output_len,
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        output_file=None,
        disable_tqdm=False,
        disable_stream=disable_stream,
        return_logprob=False,
744
        seed=seed,
745
746
747
748
        disable_ignore_eos=disable_ignore_eos,
        extra_request_body=None,
        apply_chat_template=False,
        profile=None,
Lifu Huang's avatar
Lifu Huang committed
749
        lora_name=lora_name,
750
        prompt_suffix="",
751
        device=device,
752
        pd_separated=pd_separated,
753
754
755
    )


756
757
758
759
760
761
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
762
763
    dataset_path="",
    tokenizer=None,
764
765
    random_input_len=4096,
    random_output_len=2048,
766
    sharegpt_context_len=None,
767
    disable_stream=False,
768
    disable_ignore_eos=False,
769
    need_warmup=False,
770
    seed: int = 0,
771
    device="auto",
Lifu Huang's avatar
Lifu Huang committed
772
773
    background_task: Optional[Callable[[str, asyncio.Event], Awaitable[None]]] = None,
    lora_name: Optional[str] = None,
774
):
775
776
    if device == "auto":
        device = auto_config_device()
777
778
779
780
781
782
783
784
785
786
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
787
    args = get_benchmark_args(
788
        base_url=base_url,
789
        dataset_name=dataset_name,
790
791
        dataset_path=dataset_path,
        tokenizer=tokenizer,
792
        num_prompts=num_prompts,
793
794
        random_input_len=random_input_len,
        random_output_len=random_output_len,
795
        sharegpt_context_len=sharegpt_context_len,
796
        request_rate=request_rate,
797
        disable_stream=disable_stream,
798
        disable_ignore_eos=disable_ignore_eos,
799
        seed=seed,
800
        device=device,
Lifu Huang's avatar
Lifu Huang committed
801
        lora_name=lora_name,
802
803
    )

Lifu Huang's avatar
Lifu Huang committed
804
    async def _run():
805
806
807
        if need_warmup:
            warmup_args = copy.deepcopy(args)
            warmup_args.num_prompts = 16
Lifu Huang's avatar
Lifu Huang committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
            await asyncio.to_thread(run_benchmark, warmup_args)

        start_event = asyncio.Event()
        stop_event = asyncio.Event()
        task_handle = (
            asyncio.create_task(background_task(base_url, start_event, stop_event))
            if background_task
            else None
        )

        try:
            start_event.set()
            result = await asyncio.to_thread(run_benchmark, args)
        finally:
            if task_handle:
                stop_event.set()
                await task_handle

        return result

    try:
        res = asyncio.run(_run())
830
    finally:
831
        kill_process_tree(process.pid)
832
833
834

    assert res["completed"] == num_prompts
    return res
835
836


837
838
839
840
841
842
def run_bench_serving_multi(
    model,
    base_url,
    other_server_args,
    benchmark_args,
    need_warmup=False,
843
    pd_separated=False,
844
845
846
847
848
849
850
):
    # Launch the server
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
851
        pd_separated=pd_separated,
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
    )

    # run benchmark for all
    res_l = []
    try:
        for args in benchmark_args:
            if need_warmup:
                warmup_args = copy.deepcopy(args)
                warmup_args.num_prompts = 16
                run_benchmark(warmup_args)

            res = run_benchmark(args)
            res_l.append((args, res))
    finally:
        kill_process_tree(process.pid)

    return res_l


871
def run_bench_one_batch(model, other_args):
872
873
874
875
876
877
878
879
880
881
882
883
    """Launch a offline process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed

    device = auto_config_device()
    print(f"Auto-configed device: {device}", flush=True)
    other_args += ["--device", str(device)]

884
885
886
    command = [
        "python3",
        "-m",
887
        "sglang.bench_one_batch",
888
889
890
891
892
893
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
894
        *[str(x) for x in other_args],
895
    ]
saienduri's avatar
saienduri committed
896
897
    if model is not None:
        command += ["--model-path", model]
898
899
900
901
902
903
904
905
906
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

YanbingJiang's avatar
YanbingJiang committed
907
908
909
910
911
912
913
914
915
916
917
918
919
        # Return prefill_latency, decode_throughput, decode_latency
        prefill_line = output.split("\n")[-9]
        decode_line = output.split("\n")[-3]
        pattern = (
            r"latency: (?P<latency>\d+\.\d+).*?throughput:\s*(?P<throughput>\d+\.\d+)"
        )
        match = re.search(pattern, prefill_line)
        if match:
            prefill_latency = float(match.group("latency"))
        match = re.search(pattern, decode_line)
        if match:
            decode_latency = float(match.group("latency"))
            decode_throughput = float(match.group("throughput"))
920
    finally:
921
        kill_process_tree(process.pid)
922

YanbingJiang's avatar
YanbingJiang committed
923
    return prefill_latency, decode_throughput, decode_latency
924
925


926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
def run_bench_offline_throughput(model, other_args):
    command = [
        "python3",
        "-m",
        "sglang.bench_offline_throughput",
        "--num-prompts",
        "1",
        "--dataset-name",
        "random",
        "--random-input-len",
        "256",
        "--random-output-len",
        "256",
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    print(f"{command=}")
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        output_throughput = -1
        for line in output.split("\n"):
            if "Last generation throughput (tok/s):" in line:
                output_throughput = float(line.split(":")[-1])
    finally:
        kill_process_tree(process.pid)

    return output_throughput


964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
def run_bench_one_batch_server(
    model,
    base_url,
    server_args,
    bench_args,
    other_server_args,
    simulate_spec_acc_lens=None,
):
    from sglang.bench_one_batch_server import run_benchmark

    if simulate_spec_acc_lens is not None:
        env = {**os.environ, "SIMULATE_ACC_LEN": str(simulate_spec_acc_lens)}
    else:
        env = None

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
        env=env,
    )
    try:
        run_benchmark(server_args=server_args, bench_args=bench_args)
    finally:
        kill_process_tree(process.pid)


992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
1024
1025


1026
1027
STDERR_FILENAME = "/tmp/stderr.txt"
STDOUT_FILENAME = "/tmp/stdout.txt"
1028
1029


1030
def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
1031
    """Print the output in real time with another thread."""
1032
    while not os.path.exists(filename):
1033
        time.sleep(0.01)
1034

1035
1036
    pt = 0
    while pt >= 0:
1037
        if pt > 0 and not os.path.exists(filename):
1038
            break
1039
1040
1041
1042
1043
        try:
            lines = open(filename).readlines()
        except FileNotFoundError:
            print(f"{pt=}, {os.path.exists(filename)=}")
            raise
1044
1045
        for line in lines[pt:]:
            print(line, end="", flush=True)
1046
            output_lines.append(line)
1047
            pt += 1
1048
        time.sleep(0.1)
1049
1050


1051
1052
def run_and_check_memory_leak(
    workload_func,
1053
    disable_radix_cache,
1054
    enable_mixed_chunk,
1055
    disable_overlap,
1056
    chunked_prefill_size,
1057
    assert_has_abort,
1058
):
1059
1060
1061
1062
1063
1064
    other_args = [
        "--chunked-prefill-size",
        str(chunked_prefill_size),
        "--log-level",
        "debug",
    ]
1065
1066
1067
1068
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
1069
1070
    if disable_overlap:
        other_args += ["--disable-overlap-schedule"]
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

1092
1093
    # Run the workload
    workload_func(base_url, model)
1094
1095

    # Clean up everything
1096
    kill_process_tree(process.pid)
1097
1098
    stdout.close()
    stderr.close()
1099
1100
1101
1102
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
Lianmin Zheng's avatar
Lianmin Zheng committed
1103
    kill_process_tree(process.pid)
1104
1105
1106
1107
1108
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
1109
    has_abort = False
1110
    for line in output_lines:
Lianmin Zheng's avatar
Lianmin Zheng committed
1111
        if "Uvicorn running" in line:
1112
1113
1114
            has_new_server = True
        if "leak" in line:
            has_leak = True
1115
1116
        if "Abort" in line:
            has_abort = True
1117
1118

    assert has_new_server
1119
    assert not has_leak
1120
1121
    if assert_has_abort:
        assert has_abort
1122
1123


1124
1125
1126
1127
def run_command_and_capture_output(command, env: Optional[dict] = None):
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = subprocess.Popen(
1128
        command, stdout=stdout, stderr=stdout, env=env, text=True
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines, STDOUT_FILENAME))
    t.start()

    # Join the process
    process.wait()

    stdout.close()
    stderr.close()
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
    kill_process_tree(process.pid)
    t.join()

    return output_lines


1151
1152
1153
def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
1154
    disable_overlap=False,
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
1169
            assert metrics["score"] >= 0.65, f"{metrics=}"
1170
1171
1172
        finally:
            pass

Chayenne's avatar
Chayenne committed
1173
1174
1175
1176
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
1177
        disable_overlap,
Chayenne's avatar
Chayenne committed
1178
        chunked_prefill_size,
1179
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1180
    )
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
1212
1213
1214
1215
1216
1217
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
1218
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1219
    )
1220
1221
1222


def write_github_step_summary(content):
1223
1224
1225
1226
    if not os.environ.get("GITHUB_STEP_SUMMARY"):
        logging.warning("GITHUB_STEP_SUMMARY environment variable not set")
        return

1227
1228
    with open(os.environ["GITHUB_STEP_SUMMARY"], "a") as f:
        f.write(content)
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303


def run_logprob_check(self: unittest.TestCase, arg: Tuple):
    (
        input_len,
        output_len,
        temperature,
        logprob_start_len,
        return_logprob,
        top_logprobs_num,
    ) = arg
    input_ids = list(range(input_len))

    response = requests.post(
        self.base_url + "/generate",
        json={
            "input_ids": input_ids,
            "sampling_params": {
                "temperature": temperature,
                "max_new_tokens": output_len,
                "ignore_eos": True,
            },
            "return_logprob": return_logprob,
            "logprob_start_len": logprob_start_len,
            "top_logprobs_num": top_logprobs_num,
        },
    )
    response_json = response.json()

    res = response_json
    self.assertEqual(res["meta_info"]["prompt_tokens"], input_len)
    self.assertEqual(res["meta_info"]["completion_tokens"], output_len)

    # Test the number of tokens are correct
    if return_logprob:
        self.assertEqual(
            len(res["meta_info"]["input_token_logprobs"]) + logprob_start_len,
            res["meta_info"]["prompt_tokens"],
        )
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), output_len)

        if top_logprobs_num:
            self.assertEqual(
                len(res["meta_info"]["input_top_logprobs"]) + logprob_start_len,
                res["meta_info"]["prompt_tokens"],
            )
            self.assertEqual(len(res["meta_info"]["output_top_logprobs"]), output_len)

            for i in range(output_len):
                self.assertEqual(
                    len(res["meta_info"]["output_top_logprobs"][i]),
                    top_logprobs_num,
                )

                # Test the top-1 tokens are the same as output tokens if temperature == 0
                if temperature == 0:
                    rank = 0
                    while rank < len(res["meta_info"]["output_top_logprobs"][i]):
                        try:
                            self.assertListEqual(
                                res["meta_info"]["output_token_logprobs"][i],
                                res["meta_info"]["output_top_logprobs"][i][rank],
                            )
                            break
                        except AssertionError:
                            # There's a tie. Allow the second item in this case.
                            if (
                                res["meta_info"]["output_top_logprobs"][i][rank][0]
                                == res["meta_info"]["output_top_logprobs"][i][rank + 1][
                                    0
                                ]
                            ):
                                rank += 1
                            else:
                                raise
1304
1305
1306
1307


class CustomTestCase(unittest.TestCase):
    def _callTestMethod(self, method):
1308
        max_retry = int(
Yineng Zhang's avatar
Yineng Zhang committed
1309
            os.environ.get("SGLANG_TEST_MAX_RETRY", "1" if is_in_ci() else "0")
1310
        )
1311
1312
1313
        retry(
            lambda: super(CustomTestCase, self)._callTestMethod(method),
            max_retry=max_retry,
1314
        )
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346


def dump_bench_raw_result(
    path: str,
    states,
    preds,
    labels,
):
    if not path:
        return

    rows = []
    for i in range(len(states)):
        state = states[i]
        output = state["answer"]
        prompt = _ensure_remove_suffix(state.text(), output)
        rows.append(
            dict(
                prompt_id=i,
                prompt=prompt,
                output=output,
                correct=bool(preds[i] == labels[i]),
            )
        )

    print(f"BenchRawResultDumper save results to {path}")
    Path(path).write_text("\n".join(json.dumps(row) for row in rows))


def _ensure_remove_suffix(text: str, suffix: str):
    assert text.endswith(suffix)
    return text.removesuffix(suffix)