test_utils.py 35.9 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
4
import copy
5
import logging
6
import os
7
import random
YanbingJiang's avatar
YanbingJiang committed
8
import re
9
import subprocess
10
import threading
11
import time
12
import unittest
13
from concurrent.futures import ThreadPoolExecutor
Byron Hsu's avatar
Byron Hsu committed
14
from dataclasses import dataclass
Liangsheng Yin's avatar
Liangsheng Yin committed
15
from functools import partial
16
from types import SimpleNamespace
17
from typing import Callable, List, Optional, Tuple
Liangsheng Yin's avatar
Liangsheng Yin committed
18

Lianmin Zheng's avatar
Lianmin Zheng committed
19
20
import numpy as np
import requests
21
22
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
23

24
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
25
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
26
27
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
28
29
from sglang.srt.utils import (
    get_bool_env_var,
30
    get_device,
31
32
33
34
    is_port_available,
    kill_process_tree,
    retry,
)
35
from sglang.test.run_eval import run_eval
36
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
37

Lianmin Zheng's avatar
Lianmin Zheng committed
38
39
40
# General test models
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
41
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_BASE = "meta-llama/Llama-3.2-1B"
Lianmin Zheng's avatar
Lianmin Zheng committed
42
43
44
45
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST = "Qwen/Qwen1.5-MoE-A2.7B"

# MLA test models
woodx's avatar
woodx committed
46
47
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST = "cross-encoder/ms-marco-MiniLM-L6-v2"
Lianmin Zheng's avatar
Lianmin Zheng committed
48
49
50
51
52
53
54
55
56
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_TEST_MLA = "lmsys/sglang-ci-dsv3-test"
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN = "lmsys/sglang-ci-dsv3-test-NextN"

# FP8 models
DEFAULT_MODEL_NAME_FOR_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_ACCURACY_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST_FP8 = (
HandH1998's avatar
HandH1998 committed
57
58
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic"
)
Lianmin Zheng's avatar
Lianmin Zheng committed
59
DEFAULT_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_FP8 = (
60
61
62
    "nvidia/Llama-3.1-8B-Instruct-FP8"
)

Lianmin Zheng's avatar
Lianmin Zheng committed
63
64
65
# EAGLE
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST = "meta-llama/Llama-2-7b-chat-hf"
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST = "lmsys/sglang-EAGLE-llama2-chat-7B"
Stefan He's avatar
Stefan He committed
66
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3 = "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B"
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68

# Other use cases
Stefan He's avatar
Stefan He committed
69
70
71
DEFAULT_MODEL_NAME_FOR_TEST_LOCAL_ATTENTION = (
    "meta-llama/Llama-4-Scout-17B-16E-Instruct"
)
72
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
Xihuai Wang's avatar
Xihuai Wang committed
73
DEFAULT_REASONING_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
Jinyan Chen's avatar
Jinyan Chen committed
74
DEFAULT_DEEPPEP_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-V3-0324"
75
76
77
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST = (
    "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
)
78
DEFAULT_ENABLE_THINKING_MODEL_NAME_FOR_TEST = "Qwen/Qwen3-30B-A3B"
Lianmin Zheng's avatar
Lianmin Zheng committed
79
80

# Nightly tests
81
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
82
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
83
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
Ke Bao's avatar
Ke Bao committed
84
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
85
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4,hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
86
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN = "Qwen/Qwen2.5-1.5B-Instruct"
87
DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST = "Qwen/Qwen2.5-VL-3B-Instruct"
88
89
90
91

DEFAULT_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
DEFAULT_VIDEO_URL = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"

92
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
Lianmin Zheng's avatar
Lianmin Zheng committed
93

94
95
96

def is_in_ci():
    """Return whether it is in CI runner."""
97
    return get_bool_env_var("SGLANG_IS_IN_CI")
98
99


100
101
102
103
104
def is_in_amd_ci():
    """Return whether it is in an AMD CI runner."""
    return get_bool_env_var("SGLANG_AMD_CI")


105
if is_in_ci():
106
107
108
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        5000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
109
else:
110
111
112
113
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        7000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
DEFAULT_URL_FOR_TEST = f"http://127.0.0.1:{DEFAULT_PORT_FOR_SRT_TEST_RUNNER + 1000}"
114

115
116
117
if is_in_amd_ci():
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 3000

Lianmin Zheng's avatar
Lianmin Zheng committed
118

Liangsheng Yin's avatar
Liangsheng Yin committed
119
120
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


136
137
138
139
140
141
142
143
144
145
146
def find_available_port(base_port: int):
    port = base_port + random.randint(100, 1000)
    while True:
        if is_port_available(port):
            return port
        if port < 60000:
            port += 42
        else:
            port -= 43


Liangsheng Yin's avatar
Liangsheng Yin committed
147
148
149
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


166
def call_generate_outlines(
167
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
168
):
Liangsheng Yin's avatar
Liangsheng Yin committed
169
170
    assert url is not None

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
188
189
190
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
246
247
248
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
249
250
251
252
253
254
255
256
257
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
258
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
259
260
261
262
263
264
265
266
267
268
269
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
270
271
272
273
274
275
276
277
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


278
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
279
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
280
281
282
283
284
285
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
286
287
288
289
        choices=[
            "vllm",
            "outlines",
            "lightllm",
290
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
291
292
293
294
            "guidance",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
295
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
296
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
297
298
299
300
301
302
303
304
305
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
306
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
307
308
            "lightllm": 22000,
            "srt-raw": 30000,
309
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
310
311
312
313
314
        }
        args.port = default_port.get(args.backend, None)
    return args


315
316
317
318
319
320
321
322
323
324
325
326
def auto_config_device() -> str:
    """Auto-config available device platform"""

    try:
        device = get_device()
    except (RuntimeError, ImportError) as e:
        print(f"Warning: {e} - Falling back to CPU")
        device = "cpu"

    return device


327
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
328
329
330
331
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
332
333
334
335
336
337
338
    parser.add_argument(
        "--device",
        type=str,
        default="auto",
        choices=["auto", "cuda", "rocm", "cpu"],
        help="Device type (auto/cuda/rocm/cpu). Auto will detect available platforms",
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
339
340
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
341

Lianmin Zheng's avatar
Lianmin Zheng committed
342
343
344
    return args


345
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
346
347
348
349
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
350
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
351
352
353
354
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
355
356


357
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
358
359
360
361
362
363
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
364
365
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
366
367
368
369
370
371
372
373
374
375
376
377
378
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


379
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


396
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
397
398
399
400
401
402
403
404
405
406
407
408
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


409
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
410
411
412
413
414
415
416
417
418
419
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
420
421


422
def popen_launch_server(
423
424
425
426
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
427
    other_args: list[str] = [],
428
    env: Optional[dict] = None,
429
    return_stdout_stderr: Optional[tuple] = None,
430
    device: str = "auto",
431
    pd_separated: bool = False,
432
):
433
434
435
436
437
438
439
440
441
442
443
444
445
    """Launch a server process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed
    if device == "auto":
        device = auto_config_device()
        print(f"Auto-configed device: {device}", flush=True)
        other_args = list(other_args)
        other_args += ["--device", str(device)]

446
447
448
    _, host, port = base_url.split(":")
    host = host[2:]

449
    if pd_separated:
450
451
452
453
        command = "sglang.launch_pd_server"
    else:
        command = "sglang.launch_server"

454
455
456
    command = [
        "python3",
        "-m",
457
        command,
458
459
        "--model-path",
        model,
460
        *[str(x) for x in other_args],
461
    ]
Chayenne's avatar
Chayenne committed
462

463
    if pd_separated:
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        command.extend(
            [
                "--lb-host",
                host,
                "--lb-port",
                port,
            ]
        )
    else:
        command.extend(
            [
                "--host",
                host,
                "--port",
                port,
            ]
        )

482
483
484
    if api_key:
        command += ["--api-key", api_key]

485
486
    print(f"command={' '.join(command)}")

487
488
489
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
490
491
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
492
493
494
495
496
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
497

498
    start_time = time.perf_counter()
499
    with requests.Session() as session:
500
        while time.perf_counter() - start_time < timeout:
501
502
503
504
505
506
507
508
509

            return_code = process.poll()
            if return_code is not None:
                # Server failed to start (non-zero exit code) or crashed
                raise Exception(
                    f"Server process exited with code {return_code}. "
                    "Check server logs for errors."
                )

510
511
512
513
514
515
516
517
518
519
520
521
522
            try:
                headers = {
                    "Content-Type": "application/json; charset=utf-8",
                    "Authorization": f"Bearer {api_key}",
                }
                response = session.get(
                    f"{base_url}/health_generate",
                    headers=headers,
                )
                if response.status_code == 200:
                    return process
            except requests.RequestException:
                pass
523
524
525

            return_code = process.poll()
            if return_code is not None:
fzyzcjy's avatar
fzyzcjy committed
526
527
528
                raise Exception(
                    f"Server unexpectedly exits ({return_code=}). Usually there will be error logs describing the cause far above this line."
                )
529

530
            time.sleep(10)
531
532

    kill_process_tree(process.pid)
533
    raise TimeoutError("Server failed to start within the timeout period.")
534
535


536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
def popen_launch_pd_server(
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: list[str] = (),
    env: Optional[dict] = None,
):
    _, host, port = base_url.split(":")
    host = host[2:]

    command = "sglang.launch_server"

    command = [
        "python3",
        "-m",
        command,
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    command.extend(
        [
            "--host",
            host,
            "--port",
            port,
        ]
    )

    if api_key:
        command += ["--api-key", api_key]

    print(f"command={' '.join(command)}")

572
    process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
573

574
    return process
575
576


577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


Byron Hsu's avatar
Byron Hsu committed
601
602
603
604
605
606
607
@dataclass
class TestFile:
    name: str
    estimated_time: float = 60


def run_unittest_files(files: List[TestFile], timeout_per_file: float):
608
    tic = time.perf_counter()
609
610
    success = True

Lianmin Zheng's avatar
Lianmin Zheng committed
611
    for i, file in enumerate(files):
Lianmin Zheng's avatar
Lianmin Zheng committed
612
        filename, estimated_time = file.name, file.estimated_time
613
        process = None
614

Mingyi's avatar
Mingyi committed
615
        def run_one_file(filename):
616
617
            nonlocal process

Mingyi's avatar
Mingyi committed
618
            filename = os.path.join(os.getcwd(), filename)
Lianmin Zheng's avatar
Lianmin Zheng committed
619
            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
620
                f".\n.\nBegin ({i}/{len(files) - 1}):\npython3 {filename}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
621
622
                flush=True,
            )
623
            tic = time.perf_counter()
Lianmin Zheng's avatar
Lianmin Zheng committed
624

Mingyi's avatar
Mingyi committed
625
626
627
628
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
629
            elapsed = time.perf_counter() - tic
Lianmin Zheng's avatar
Lianmin Zheng committed
630
631

            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
632
                f".\n.\nEnd ({i}/{len(files) - 1}):\n{filename=}, {elapsed=:.0f}, {estimated_time=}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
633
634
                flush=True,
            )
Mingyi's avatar
Mingyi committed
635
            return process.returncode
636
637

        try:
Mingyi's avatar
Mingyi committed
638
639
640
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
641
642
643
            assert (
                ret_code == 0
            ), f"expected return code 0, but {filename} returned {ret_code}"
644
        except TimeoutError:
645
            kill_process_tree(process.pid)
646
647
            time.sleep(5)
            print(
648
649
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
650
            )
Mingyi's avatar
Mingyi committed
651
652
            success = False
            break
653
654

    if success:
655
        print(f"Success. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
656
    else:
657
        print(f"Fail. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
658
659

    return 0 if success else -1
660
661
662
663


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
664
665


666
667
668
669
670
671
def get_benchmark_args(
    base_url="",
    dataset_name="",
    dataset_path="",
    tokenizer="",
    num_prompts=500,
672
    sharegpt_output_len=None,
673
674
    random_input_len=4096,
    random_output_len=2048,
675
    sharegpt_context_len=None,
676
677
678
    request_rate=float("inf"),
    disable_stream=False,
    disable_ignore_eos=False,
679
    seed: int = 0,
680
    device="auto",
681
    pd_separated: bool = False,
682
683
684
685
686
687
688
689
690
691
692
):
    return SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
        dataset_name=dataset_name,
        dataset_path=dataset_path,
        model=None,
        tokenizer=tokenizer,
        num_prompts=num_prompts,
693
694
        sharegpt_output_len=sharegpt_output_len,
        sharegpt_context_len=sharegpt_context_len,
695
696
697
698
699
700
701
702
703
        random_input_len=random_input_len,
        random_output_len=random_output_len,
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        output_file=None,
        disable_tqdm=False,
        disable_stream=disable_stream,
        return_logprob=False,
704
        seed=seed,
705
706
707
708
709
        disable_ignore_eos=disable_ignore_eos,
        extra_request_body=None,
        apply_chat_template=False,
        profile=None,
        lora_name=None,
710
        prompt_suffix="",
711
        device=device,
712
        pd_separated=pd_separated,
713
714
715
    )


716
717
718
719
720
721
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
722
723
    dataset_path="",
    tokenizer=None,
724
725
    random_input_len=4096,
    random_output_len=2048,
726
    sharegpt_context_len=None,
727
    disable_stream=False,
728
    disable_ignore_eos=False,
729
    need_warmup=False,
730
    seed: int = 0,
731
    device="auto",
732
):
733
734
    if device == "auto":
        device = auto_config_device()
735
736
737
738
739
740
741
742
743
744
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
745
    args = get_benchmark_args(
746
        base_url=base_url,
747
        dataset_name=dataset_name,
748
749
        dataset_path=dataset_path,
        tokenizer=tokenizer,
750
        num_prompts=num_prompts,
751
752
        random_input_len=random_input_len,
        random_output_len=random_output_len,
753
        sharegpt_context_len=sharegpt_context_len,
754
        request_rate=request_rate,
755
        disable_stream=disable_stream,
756
        disable_ignore_eos=disable_ignore_eos,
757
        seed=seed,
758
        device=device,
759
760
761
    )

    try:
762
763
764
765
        if need_warmup:
            warmup_args = copy.deepcopy(args)
            warmup_args.num_prompts = 16
            run_benchmark(warmup_args)
766
767
        res = run_benchmark(args)
    finally:
768
        kill_process_tree(process.pid)
769
770
771

    assert res["completed"] == num_prompts
    return res
772
773


774
775
776
777
778
779
def run_bench_serving_multi(
    model,
    base_url,
    other_server_args,
    benchmark_args,
    need_warmup=False,
780
    pd_separated=False,
781
782
783
784
785
786
787
):
    # Launch the server
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
788
        pd_separated=pd_separated,
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
    )

    # run benchmark for all
    res_l = []
    try:
        for args in benchmark_args:
            if need_warmup:
                warmup_args = copy.deepcopy(args)
                warmup_args.num_prompts = 16
                run_benchmark(warmup_args)

            res = run_benchmark(args)
            res_l.append((args, res))
    finally:
        kill_process_tree(process.pid)

    return res_l


808
def run_bench_one_batch(model, other_args):
809
810
811
812
813
814
815
816
817
818
819
820
    """Launch a offline process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed

    device = auto_config_device()
    print(f"Auto-configed device: {device}", flush=True)
    other_args += ["--device", str(device)]

821
822
823
    command = [
        "python3",
        "-m",
824
        "sglang.bench_one_batch",
825
826
827
828
829
830
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
831
        *[str(x) for x in other_args],
832
    ]
saienduri's avatar
saienduri committed
833
834
    if model is not None:
        command += ["--model-path", model]
835
836
837
838
839
840
841
842
843
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

YanbingJiang's avatar
YanbingJiang committed
844
845
846
847
848
849
850
851
852
853
854
855
856
        # Return prefill_latency, decode_throughput, decode_latency
        prefill_line = output.split("\n")[-9]
        decode_line = output.split("\n")[-3]
        pattern = (
            r"latency: (?P<latency>\d+\.\d+).*?throughput:\s*(?P<throughput>\d+\.\d+)"
        )
        match = re.search(pattern, prefill_line)
        if match:
            prefill_latency = float(match.group("latency"))
        match = re.search(pattern, decode_line)
        if match:
            decode_latency = float(match.group("latency"))
            decode_throughput = float(match.group("throughput"))
857
    finally:
858
        kill_process_tree(process.pid)
859

YanbingJiang's avatar
YanbingJiang committed
860
    return prefill_latency, decode_throughput, decode_latency
861
862


863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
def run_bench_offline_throughput(model, other_args):
    command = [
        "python3",
        "-m",
        "sglang.bench_offline_throughput",
        "--num-prompts",
        "1",
        "--dataset-name",
        "random",
        "--random-input-len",
        "256",
        "--random-output-len",
        "256",
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    print(f"{command=}")
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        output_throughput = -1
        for line in output.split("\n"):
            if "Last generation throughput (tok/s):" in line:
                output_throughput = float(line.split(":")[-1])
    finally:
        kill_process_tree(process.pid)

    return output_throughput


901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
def run_bench_one_batch_server(
    model,
    base_url,
    server_args,
    bench_args,
    other_server_args,
    simulate_spec_acc_lens=None,
):
    from sglang.bench_one_batch_server import run_benchmark

    if simulate_spec_acc_lens is not None:
        env = {**os.environ, "SIMULATE_ACC_LEN": str(simulate_spec_acc_lens)}
    else:
        env = None

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
        env=env,
    )
    try:
        run_benchmark(server_args=server_args, bench_args=bench_args)
    finally:
        kill_process_tree(process.pid)


929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
961
962


963
964
STDERR_FILENAME = "/tmp/stderr.txt"
STDOUT_FILENAME = "/tmp/stdout.txt"
965
966


967
def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
968
    """Print the output in real time with another thread."""
969
    while not os.path.exists(filename):
970
        time.sleep(0.01)
971

972
973
    pt = 0
    while pt >= 0:
974
        if pt > 0 and not os.path.exists(filename):
975
            break
976
977
978
979
980
        try:
            lines = open(filename).readlines()
        except FileNotFoundError:
            print(f"{pt=}, {os.path.exists(filename)=}")
            raise
981
982
        for line in lines[pt:]:
            print(line, end="", flush=True)
983
            output_lines.append(line)
984
            pt += 1
985
        time.sleep(0.1)
986
987


988
989
def run_and_check_memory_leak(
    workload_func,
990
    disable_radix_cache,
991
    enable_mixed_chunk,
992
    disable_overlap,
993
    chunked_prefill_size,
994
    assert_has_abort,
995
):
996
997
998
999
1000
1001
    other_args = [
        "--chunked-prefill-size",
        str(chunked_prefill_size),
        "--log-level",
        "debug",
    ]
1002
1003
1004
1005
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
1006
1007
    if disable_overlap:
        other_args += ["--disable-overlap-schedule"]
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

1029
1030
    # Run the workload
    workload_func(base_url, model)
1031
1032

    # Clean up everything
1033
    kill_process_tree(process.pid)
1034
1035
    stdout.close()
    stderr.close()
1036
1037
1038
1039
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
Lianmin Zheng's avatar
Lianmin Zheng committed
1040
    kill_process_tree(process.pid)
1041
1042
1043
1044
1045
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
1046
    has_abort = False
1047
    for line in output_lines:
Lianmin Zheng's avatar
Lianmin Zheng committed
1048
        if "Uvicorn running" in line:
1049
1050
1051
            has_new_server = True
        if "leak" in line:
            has_leak = True
1052
1053
        if "Abort" in line:
            has_abort = True
1054
1055

    assert has_new_server
1056
    assert not has_leak
1057
1058
    if assert_has_abort:
        assert has_abort
1059
1060


1061
1062
1063
1064
def run_command_and_capture_output(command, env: Optional[dict] = None):
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = subprocess.Popen(
1065
        command, stdout=stdout, stderr=stdout, env=env, text=True
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines, STDOUT_FILENAME))
    t.start()

    # Join the process
    process.wait()

    stdout.close()
    stderr.close()
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
    kill_process_tree(process.pid)
    t.join()

    return output_lines


1088
1089
1090
def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
1091
    disable_overlap=False,
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
1106
            assert metrics["score"] >= 0.65, f"{metrics=}"
1107
1108
1109
        finally:
            pass

Chayenne's avatar
Chayenne committed
1110
1111
1112
1113
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
1114
        disable_overlap,
Chayenne's avatar
Chayenne committed
1115
        chunked_prefill_size,
1116
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1117
    )
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
1149
1150
1151
1152
1153
1154
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
1155
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1156
    )
1157
1158
1159


def write_github_step_summary(content):
1160
1161
1162
1163
    if not os.environ.get("GITHUB_STEP_SUMMARY"):
        logging.warning("GITHUB_STEP_SUMMARY environment variable not set")
        return

1164
1165
    with open(os.environ["GITHUB_STEP_SUMMARY"], "a") as f:
        f.write(content)
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240


def run_logprob_check(self: unittest.TestCase, arg: Tuple):
    (
        input_len,
        output_len,
        temperature,
        logprob_start_len,
        return_logprob,
        top_logprobs_num,
    ) = arg
    input_ids = list(range(input_len))

    response = requests.post(
        self.base_url + "/generate",
        json={
            "input_ids": input_ids,
            "sampling_params": {
                "temperature": temperature,
                "max_new_tokens": output_len,
                "ignore_eos": True,
            },
            "return_logprob": return_logprob,
            "logprob_start_len": logprob_start_len,
            "top_logprobs_num": top_logprobs_num,
        },
    )
    response_json = response.json()

    res = response_json
    self.assertEqual(res["meta_info"]["prompt_tokens"], input_len)
    self.assertEqual(res["meta_info"]["completion_tokens"], output_len)

    # Test the number of tokens are correct
    if return_logprob:
        self.assertEqual(
            len(res["meta_info"]["input_token_logprobs"]) + logprob_start_len,
            res["meta_info"]["prompt_tokens"],
        )
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), output_len)

        if top_logprobs_num:
            self.assertEqual(
                len(res["meta_info"]["input_top_logprobs"]) + logprob_start_len,
                res["meta_info"]["prompt_tokens"],
            )
            self.assertEqual(len(res["meta_info"]["output_top_logprobs"]), output_len)

            for i in range(output_len):
                self.assertEqual(
                    len(res["meta_info"]["output_top_logprobs"][i]),
                    top_logprobs_num,
                )

                # Test the top-1 tokens are the same as output tokens if temperature == 0
                if temperature == 0:
                    rank = 0
                    while rank < len(res["meta_info"]["output_top_logprobs"][i]):
                        try:
                            self.assertListEqual(
                                res["meta_info"]["output_token_logprobs"][i],
                                res["meta_info"]["output_top_logprobs"][i][rank],
                            )
                            break
                        except AssertionError:
                            # There's a tie. Allow the second item in this case.
                            if (
                                res["meta_info"]["output_top_logprobs"][i][rank][0]
                                == res["meta_info"]["output_top_logprobs"][i][rank + 1][
                                    0
                                ]
                            ):
                                rank += 1
                            else:
                                raise
1241
1242
1243
1244


class CustomTestCase(unittest.TestCase):
    def _callTestMethod(self, method):
1245
        max_retry = int(
Yineng Zhang's avatar
Yineng Zhang committed
1246
            os.environ.get("SGLANG_TEST_MAX_RETRY", "1" if is_in_ci() else "0")
1247
        )
1248
1249
1250
        retry(
            lambda: super(CustomTestCase, self)._callTestMethod(method),
            max_retry=max_retry,
1251
        )