"setup.cfg" did not exist on "ba492be7ea3aa5dbae420a190377496127e767b9"
test_utils.py 18.2 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Liangsheng Yin's avatar
Liangsheng Yin committed
4
import asyncio
5
import os
6
import subprocess
7
import threading
8
import time
Liangsheng Yin's avatar
Liangsheng Yin committed
9
from functools import partial
10
from types import SimpleNamespace
11
from typing import Callable, List, Optional
Liangsheng Yin's avatar
Liangsheng Yin committed
12

Lianmin Zheng's avatar
Lianmin Zheng committed
13
14
import numpy as np
import requests
15
16
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
17

18
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
19
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
20
21
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
Mingyi's avatar
Mingyi committed
22
from sglang.srt.utils import kill_child_process
23
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
24

25
DEFAULT_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/Meta-Llama-3.1-8B-FP8"
26
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
27
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
Ke Bao's avatar
Ke Bao committed
28
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
29
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
30
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
31
32
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
33
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
Ke Bao's avatar
Ke Bao committed
34
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
35
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
36

37
38
39
40
41
42
43

def is_in_ci():
    """Return whether it is in CI runner."""
    return os.getenv("SGLANG_IS_IN_CI", "false") == "true"


if is_in_ci():
Lianmin Zheng's avatar
Lianmin Zheng committed
44
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 5157
45
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:6157"
46
else:
47
48
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 1157
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:2157"
49

Lianmin Zheng's avatar
Lianmin Zheng committed
50

Liangsheng Yin's avatar
Liangsheng Yin committed
51
52
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
68
69
70
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


87
def call_generate_outlines(
88
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
89
):
Liangsheng Yin's avatar
Liangsheng Yin committed
90
91
    assert url is not None

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
109
110
111
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


127
def call_generate_gserver(prompt, temperature, max_tokens, stop=None, url=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
128
    raise NotImplementedError()
129
130


Liangsheng Yin's avatar
Liangsheng Yin committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


async def call_generate_lmql(
    prompt, temperature, max_tokens, stop=None, n=1, max_len=4096, model=None, **kwargs
):
    assert model is not None
    import lmql

    if stop != None:

        @lmql.query(model=model)
        async def program(question, max_tokens, stop):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens and STOPS_AT(ANSWER, stop)
            return ANSWER
            '''

    else:

        @lmql.query(model=model)
        async def program(question, max_tokens):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens
            return ANSWER
            '''

    tasks = [
        program(
            question=prompt,
            temperature=temperature,
            max_tokens=max_tokens,
            stop=stop,
            max_len=max_len,
            **kwargs,
        )
        for _ in range(n)
    ]
    rets = await asyncio.gather(*tasks)
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
210
211
212
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
213
214
215
216
217
218
219
220
221
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
222
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
223
224
225
226
227
228
229
230
231
232
233
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


async def call_select_lmql(context, choices, temperature=0, max_len=4096, model=None):
    assert model is not None
    import lmql

    @lmql.query(model=model)
    async def program(ctx, choices):
        '''lmql
        """{ctx}[ANSWER]""" where ANSWER in set(choices)
        return ANSWER
        '''

    answer = await program(
        ctx=context, choices=choices, temperature=temperature, max_len=max_len
    )
    return choices.index(answer)


259
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
260
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
261
262
263
264
265
266
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
267
268
269
270
        choices=[
            "vllm",
            "outlines",
            "lightllm",
271
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
272
273
274
275
276
            "guidance",
            "lmql",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
277
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
278
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
279
280
281
282
283
284
285
286
287
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
288
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
289
290
291
            "lightllm": 22000,
            "lmql": 23000,
            "srt-raw": 30000,
292
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
293
294
295
296
297
        }
        args.port = default_port.get(args.backend, None)
    return args


298
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
299
300
301
302
303
304
305
306
307
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


308
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
309
310
311
312
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
313
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
314
315
316
317
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
318
319


320
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
321
322
323
324
325
326
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
327
328
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_generate_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


347
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select

    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_select_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


370
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
371
372
373
374
375
376
377
378
379
380
381
382
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


383
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
384
385
386
387
388
389
390
391
392
393
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
394
395


396
def popen_launch_server(
397
398
399
400
401
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: tuple = (),
402
403
    env: Optional[dict] = None,
    return_stdout_stderr: bool = False,
404
405
406
407
):
    _, host, port = base_url.split(":")
    host = host[2:]

408
409
410
411
412
413
414
    command = [
        "python3",
        "-m",
        "sglang.launch_server",
        "--model-path",
        model,
        "--host",
415
        host,
416
        "--port",
417
418
        port,
        *other_args,
419
    ]
420
421
422
    if api_key:
        command += ["--api-key", api_key]

423
424
425
426
427
428
429
430
431
432
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
433
434
435
436

    start_time = time.time()
    while time.time() - start_time < timeout:
        try:
437
438
439
440
441
            headers = {
                "Content-Type": "application/json; charset=utf-8",
                "Authorization": f"Bearer {api_key}",
            }
            response = requests.get(f"{base_url}/v1/models", headers=headers)
442
443
444
445
446
447
            if response.status_code == 200:
                return process
        except requests.RequestException:
            pass
        time.sleep(10)
    raise TimeoutError("Server failed to start within the timeout period.")
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473


def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


474
def run_unittest_files(files: List[str], timeout_per_file: float):
475
476
477
478
    tic = time.time()
    success = True

    for filename in files:
Mingyi's avatar
Mingyi committed
479
        global process
480

Mingyi's avatar
Mingyi committed
481
482
        def run_one_file(filename):
            filename = os.path.join(os.getcwd(), filename)
483
            print(f"\n\nRun:\npython3 {filename}\n\n", flush=True)
Mingyi's avatar
Mingyi committed
484
485
486
487
488
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
            return process.returncode
489
490

        try:
Mingyi's avatar
Mingyi committed
491
492
493
494
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
            assert ret_code == 0
495
        except TimeoutError:
Mingyi's avatar
Mingyi committed
496
            kill_child_process(process.pid)
497
498
            time.sleep(5)
            print(
499
500
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
501
            )
Mingyi's avatar
Mingyi committed
502
503
            success = False
            break
504
505

    if success:
506
        print(f"Success. Time elapsed: {time.time() - tic:.2f}s", flush=True)
507
    else:
508
        print(f"Fail. Time elapsed: {time.time() - tic:.2f}s", flush=True)
509
510

    return 0 if success else -1
511
512
513
514


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
515
516


517
518
519
520
521
522
523
524
525
526
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
    random_input_len=4096,
    random_output_len=2048,
    disable_stream=False,
):
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
    args = SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
542
        dataset_name=dataset_name,
543
544
545
546
547
        dataset_path="",
        model=None,
        tokenizer=None,
        num_prompts=num_prompts,
        sharegpt_output_len=None,
548
549
        random_input_len=random_input_len,
        random_output_len=random_output_len,
550
551
552
553
554
555
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        seed=0,
        output_file=None,
        disable_tqdm=False,
556
        disable_stream=disable_stream,
557
558
559
560
561
562
563
564
565
566
567
        disable_ignore_eos=False,
        extra_request_body=None,
    )

    try:
        res = run_benchmark(args)
    finally:
        kill_child_process(process.pid)

    assert res["completed"] == num_prompts
    return res
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599


def run_bench_latency(model, other_args):
    command = [
        "python3",
        "-m",
        "sglang.bench_latency",
        "--model-path",
        model,
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
        *other_args,
    ]
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        lastline = output.split("\n")[-3]
        output_throughput = float(lastline.split(" ")[-2])
    finally:
        kill_child_process(process.pid)

    return output_throughput
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633


def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores