test_utils.py 23.3 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Liangsheng Yin's avatar
Liangsheng Yin committed
4
import asyncio
5
import copy
6
import os
7
import random
8
import subprocess
9
import threading
10
import time
11
from concurrent.futures import ThreadPoolExecutor
Liangsheng Yin's avatar
Liangsheng Yin committed
12
from functools import partial
13
from types import SimpleNamespace
14
from typing import Callable, List, Optional
Liangsheng Yin's avatar
Liangsheng Yin committed
15

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import numpy as np
import requests
18
19
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
20

21
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
22
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
23
24
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
25
from sglang.srt.utils import get_bool_env_var, kill_process_tree
26
from sglang.test.run_eval import run_eval
27
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
28

29
DEFAULT_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/Meta-Llama-3.1-8B-FP8"
30
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
Lianmin Zheng's avatar
Lianmin Zheng committed
31
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
32
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
33
34
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST = "Qwen/Qwen1.5-MoE-A2.7B"
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
Ke Bao's avatar
Ke Bao committed
35
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
36
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
37
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
38
39
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
40
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
Ke Bao's avatar
Ke Bao committed
41
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
42
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
43

44
45
46

def is_in_ci():
    """Return whether it is in CI runner."""
47
    return get_bool_env_var("SGLANG_IS_IN_CI")
48
49
50


if is_in_ci():
Lianmin Zheng's avatar
Lianmin Zheng committed
51
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 5157
52
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:6157"
53
else:
54
55
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 1157
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:2157"
56

Lianmin Zheng's avatar
Lianmin Zheng committed
57

Liangsheng Yin's avatar
Liangsheng Yin committed
58
59
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
75
76
77
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


94
def call_generate_outlines(
95
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
96
):
Liangsheng Yin's avatar
Liangsheng Yin committed
97
98
    assert url is not None

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
116
117
118
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


134
def call_generate_gserver(prompt, temperature, max_tokens, stop=None, url=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
135
    raise NotImplementedError()
136
137


Liangsheng Yin's avatar
Liangsheng Yin committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


async def call_generate_lmql(
    prompt, temperature, max_tokens, stop=None, n=1, max_len=4096, model=None, **kwargs
):
    assert model is not None
    import lmql

    if stop != None:

        @lmql.query(model=model)
        async def program(question, max_tokens, stop):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens and STOPS_AT(ANSWER, stop)
            return ANSWER
            '''

    else:

        @lmql.query(model=model)
        async def program(question, max_tokens):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens
            return ANSWER
            '''

    tasks = [
        program(
            question=prompt,
            temperature=temperature,
            max_tokens=max_tokens,
            stop=stop,
            max_len=max_len,
            **kwargs,
        )
        for _ in range(n)
    ]
    rets = await asyncio.gather(*tasks)
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
217
218
219
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
220
221
222
223
224
225
226
227
228
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
229
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
230
231
232
233
234
235
236
237
238
239
240
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


async def call_select_lmql(context, choices, temperature=0, max_len=4096, model=None):
    assert model is not None
    import lmql

    @lmql.query(model=model)
    async def program(ctx, choices):
        '''lmql
        """{ctx}[ANSWER]""" where ANSWER in set(choices)
        return ANSWER
        '''

    answer = await program(
        ctx=context, choices=choices, temperature=temperature, max_len=max_len
    )
    return choices.index(answer)


266
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
267
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
268
269
270
271
272
273
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
274
275
276
277
        choices=[
            "vllm",
            "outlines",
            "lightllm",
278
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
279
280
281
282
283
            "guidance",
            "lmql",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
284
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
285
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
286
287
288
289
290
291
292
293
294
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
295
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
296
297
298
            "lightllm": 22000,
            "lmql": 23000,
            "srt-raw": 30000,
299
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
300
301
302
303
304
        }
        args.port = default_port.get(args.backend, None)
    return args


305
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
306
307
308
309
310
311
312
313
314
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


315
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
316
317
318
319
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
320
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
321
322
323
324
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
325
326


327
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
328
329
330
331
332
333
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
334
335
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_generate_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


354
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select

    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_select_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


377
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
378
379
380
381
382
383
384
385
386
387
388
389
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


390
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
391
392
393
394
395
396
397
398
399
400
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
401
402


403
def popen_launch_server(
404
405
406
407
408
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: tuple = (),
409
    env: Optional[dict] = None,
410
    return_stdout_stderr: Optional[tuple] = None,
411
412
413
414
):
    _, host, port = base_url.split(":")
    host = host[2:]

415
416
417
418
419
420
421
    command = [
        "python3",
        "-m",
        "sglang.launch_server",
        "--model-path",
        model,
        "--host",
422
        host,
423
        "--port",
424
425
        port,
        *other_args,
426
    ]
Chayenne's avatar
Chayenne committed
427

428
429
430
    if api_key:
        command += ["--api-key", api_key]

431
432
433
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
434
435
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
436
437
438
439
440
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
441
442

    start_time = time.time()
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    with requests.Session() as session:
        while time.time() - start_time < timeout:
            try:
                headers = {
                    "Content-Type": "application/json; charset=utf-8",
                    "Authorization": f"Bearer {api_key}",
                }
                response = session.get(
                    f"{base_url}/health_generate",
                    headers=headers,
                )
                if response.status_code == 200:
                    return process
            except requests.RequestException:
                pass
            time.sleep(10)
459
    raise TimeoutError("Server failed to start within the timeout period.")
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485


def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


486
def run_unittest_files(files: List[str], timeout_per_file: float):
487
488
489
490
    tic = time.time()
    success = True

    for filename in files:
Mingyi's avatar
Mingyi committed
491
        global process
492

Mingyi's avatar
Mingyi committed
493
494
        def run_one_file(filename):
            filename = os.path.join(os.getcwd(), filename)
495
            print(f"\n\nRun:\npython3 {filename}\n\n", flush=True)
Mingyi's avatar
Mingyi committed
496
497
498
499
500
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
            return process.returncode
501
502

        try:
Mingyi's avatar
Mingyi committed
503
504
505
506
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
            assert ret_code == 0
507
        except TimeoutError:
508
            kill_process_tree(process.pid)
509
510
            time.sleep(5)
            print(
511
512
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
513
            )
Mingyi's avatar
Mingyi committed
514
515
            success = False
            break
516
517

    if success:
518
        print(f"Success. Time elapsed: {time.time() - tic:.2f}s", flush=True)
519
    else:
520
        print(f"Fail. Time elapsed: {time.time() - tic:.2f}s", flush=True)
521
522

    return 0 if success else -1
523
524
525
526


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
527
528


529
530
531
532
533
534
535
536
537
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
    random_input_len=4096,
    random_output_len=2048,
    disable_stream=False,
538
    need_warmup=False,
539
):
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
    args = SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
555
        dataset_name=dataset_name,
556
557
558
559
560
        dataset_path="",
        model=None,
        tokenizer=None,
        num_prompts=num_prompts,
        sharegpt_output_len=None,
561
562
        random_input_len=random_input_len,
        random_output_len=random_output_len,
563
564
565
566
567
568
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        seed=0,
        output_file=None,
        disable_tqdm=False,
569
        disable_stream=disable_stream,
570
        disable_ignore_eos=False,
571
        return_logprob=False,
572
        lora_name=None,
573
        extra_request_body=None,
574
        profile=None,
575
576
577
    )

    try:
578
579
580
581
        if need_warmup:
            warmup_args = copy.deepcopy(args)
            warmup_args.num_prompts = 16
            run_benchmark(warmup_args)
582
583
        res = run_benchmark(args)
    finally:
584
        kill_process_tree(process.pid)
585
586
587

    assert res["completed"] == num_prompts
    return res
588
589


590
def run_bench_one_batch(model, other_args):
591
592
593
    command = [
        "python3",
        "-m",
594
        "sglang.bench_one_batch",
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        "--model-path",
        model,
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
        *other_args,
    ]
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        lastline = output.split("\n")[-3]
        output_throughput = float(lastline.split(" ")[-2])
    finally:
617
        kill_process_tree(process.pid)
618
619

    return output_throughput
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653


def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
654
655
656


STDERR_FILENAME = "stderr.txt"
657
STDOUT_FILENAME = "stdout.txt"
658
659
660


def read_output(output_lines):
661
    """Print the output in real time with another thread."""
662
663
664
    while not os.path.exists(STDERR_FILENAME):
        time.sleep(1)

665
666
    pt = 0
    while pt >= 0:
667
        if pt > 0 and not os.path.exists(STDERR_FILENAME):
668
669
670
671
            break
        lines = open(STDERR_FILENAME).readlines()
        for line in lines[pt:]:
            print(line, end="", flush=True)
672
            output_lines.append(line)
673
            pt += 1
674
        time.sleep(0.1)
675
676


677
678
def run_and_check_memory_leak(
    workload_func,
679
    disable_radix_cache,
680
    enable_mixed_chunk,
681
    disable_overlap,
682
    chunked_prefill_size,
683
    assert_has_abort,
684
):
685
686
687
688
689
690
    other_args = [
        "--chunked-prefill-size",
        str(chunked_prefill_size),
        "--log-level",
        "debug",
    ]
691
692
693
694
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
695
696
    if disable_overlap:
        other_args += ["--disable-overlap-schedule"]
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

718
719
    # Run the workload
    workload_func(base_url, model)
720
721

    # Clean up everything
722
723
    kill_process_tree(process.pid)
    kill_process_tree(process.pid)
724
725
    stdout.close()
    stderr.close()
726
727
728
729
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
730
731
732
733
734
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
735
    has_abort = False
736
737
738
739
740
    for line in output_lines:
        if "The server is fired" in line:
            has_new_server = True
        if "leak" in line:
            has_leak = True
741
742
        if "Abort" in line:
            has_abort = True
743
744

    assert has_new_server
745
    assert not has_leak
746
747
    if assert_has_abort:
        assert has_abort
748
749
750
751
752


def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
753
    disable_overlap=False,
754
755
756
757
758
759
760
761
762
763
764
765
766
767
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
768
            assert metrics["score"] >= 0.65, f"{metrics=}"
769
770
771
        finally:
            pass

Chayenne's avatar
Chayenne committed
772
773
774
775
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
776
        disable_overlap,
Chayenne's avatar
Chayenne committed
777
        chunked_prefill_size,
778
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
779
    )
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):

    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
812
813
814
815
816
817
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
818
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
819
    )
820
821
822
823
824


def write_github_step_summary(content):
    with open(os.environ["GITHUB_STEP_SUMMARY"], "a") as f:
        f.write(content)