test_utils.py 28.5 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Liangsheng Yin's avatar
Liangsheng Yin committed
4
import asyncio
5
import copy
6
import os
7
import random
8
import subprocess
9
import threading
10
import time
11
import unittest
12
from concurrent.futures import ThreadPoolExecutor
Liangsheng Yin's avatar
Liangsheng Yin committed
13
from functools import partial
14
from types import SimpleNamespace
15
from typing import Callable, List, Optional, Tuple
Liangsheng Yin's avatar
Liangsheng Yin committed
16

Lianmin Zheng's avatar
Lianmin Zheng committed
17
18
import numpy as np
import requests
19
20
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
21

22
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
23
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
24
25
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
26
from sglang.srt.utils import get_bool_env_var, kill_process_tree
27
from sglang.test.run_eval import run_eval
28
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
29

30
DEFAULT_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/Meta-Llama-3.1-8B-FP8"
HandH1998's avatar
HandH1998 committed
31
32
33
34
DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST = "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST = (
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic"
)
35
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
Lianmin Zheng's avatar
Lianmin Zheng committed
36
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
37
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
38
39
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST = "Qwen/Qwen1.5-MoE-A2.7B"
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
Ke Bao's avatar
Ke Bao committed
40
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
41
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
Xihuai Wang's avatar
Xihuai Wang committed
42
DEFAULT_REASONING_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
43
44
45
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST = (
    "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
)
46
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 1000
47
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
48
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
49
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
Ke Bao's avatar
Ke Bao committed
50
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
51
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4,hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
52
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN = "Qwen/Qwen2.5-1.5B-Instruct"
53
54
DEFAULT_SMALL_VLM_MODEL_NAME = "Qwen/Qwen2-VL-2B"

55

56
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST = "meta-llama/Llama-2-7b-chat-hf"
57
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST = "lmsys/sglang-EAGLE-llama2-chat-7B"
58

59
60
61
DEFAULT_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
DEFAULT_VIDEO_URL = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"

62
63
64

def is_in_ci():
    """Return whether it is in CI runner."""
65
    return get_bool_env_var("SGLANG_IS_IN_CI")
66
67
68


if is_in_ci():
Lianmin Zheng's avatar
Lianmin Zheng committed
69
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 5157
70
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:6157"
71
else:
72
73
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 1157
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:2157"
74

Lianmin Zheng's avatar
Lianmin Zheng committed
75

Liangsheng Yin's avatar
Liangsheng Yin committed
76
77
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
93
94
95
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


112
def call_generate_outlines(
113
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
114
):
Liangsheng Yin's avatar
Liangsheng Yin committed
115
116
    assert url is not None

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
134
135
136
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
192
193
194
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
195
196
197
198
199
200
201
202
203
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
204
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
205
206
207
208
209
210
211
212
213
214
215
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
216
217
218
219
220
221
222
223
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


224
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
225
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
226
227
228
229
230
231
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
232
233
234
235
        choices=[
            "vllm",
            "outlines",
            "lightllm",
236
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
237
238
239
240
            "guidance",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
241
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
242
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
243
244
245
246
247
248
249
250
251
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
252
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
253
254
            "lightllm": 22000,
            "srt-raw": 30000,
255
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
256
257
258
259
260
        }
        args.port = default_port.get(args.backend, None)
    return args


261
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
262
263
264
265
266
267
268
269
270
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


271
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
272
273
274
275
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
276
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
277
278
279
280
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
281
282


283
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
284
285
286
287
288
289
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
290
291
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
292
293
294
295
296
297
298
299
300
301
302
303
304
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


305
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


322
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
323
324
325
326
327
328
329
330
331
332
333
334
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


335
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
336
337
338
339
340
341
342
343
344
345
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
346
347


348
def popen_launch_server(
349
350
351
352
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
Mick's avatar
Mick committed
353
    other_args: list[str] = (),
354
    env: Optional[dict] = None,
355
    return_stdout_stderr: Optional[tuple] = None,
356
    pd_seperated: bool = False,
357
358
359
360
):
    _, host, port = base_url.split(":")
    host = host[2:]

361
362
363
364
365
    if pd_seperated:
        command = "sglang.launch_pd_server"
    else:
        command = "sglang.launch_server"

366
367
368
    command = [
        "python3",
        "-m",
369
        command,
370
371
        "--model-path",
        model,
372
        *[str(x) for x in other_args],
373
    ]
Chayenne's avatar
Chayenne committed
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    if pd_seperated:
        command.extend(
            [
                "--lb-host",
                host,
                "--lb-port",
                port,
            ]
        )
    else:
        command.extend(
            [
                "--host",
                host,
                "--port",
                port,
            ]
        )

394
395
396
    if api_key:
        command += ["--api-key", api_key]

397
398
    print(f"command={' '.join(command)}")

399
400
401
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
402
403
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
404
405
406
407
408
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
409
410

    start_time = time.time()
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    with requests.Session() as session:
        while time.time() - start_time < timeout:
            try:
                headers = {
                    "Content-Type": "application/json; charset=utf-8",
                    "Authorization": f"Bearer {api_key}",
                }
                response = session.get(
                    f"{base_url}/health_generate",
                    headers=headers,
                )
                if response.status_code == 200:
                    return process
            except requests.RequestException:
                pass
            time.sleep(10)
427
428

    kill_process_tree(process.pid)
429
    raise TimeoutError("Server failed to start within the timeout period.")
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455


def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


Lianmin Zheng's avatar
Lianmin Zheng committed
456
def run_unittest_files(files: List, timeout_per_file: float):
457
458
459
    tic = time.time()
    success = True

Lianmin Zheng's avatar
Lianmin Zheng committed
460
461
    for file in files:
        filename, estimated_time = file.name, file.estimated_time
462
        process = None
463

Mingyi's avatar
Mingyi committed
464
        def run_one_file(filename):
465
466
            nonlocal process

Mingyi's avatar
Mingyi committed
467
            filename = os.path.join(os.getcwd(), filename)
Lianmin Zheng's avatar
Lianmin Zheng committed
468
469
470
            print(f".\n.\nBegin:\npython3 {filename}\n.\n.\n", flush=True)
            tic = time.time()

Mingyi's avatar
Mingyi committed
471
472
473
474
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
Lianmin Zheng's avatar
Lianmin Zheng committed
475
476
477
478
479
480
            elapsed = time.time() - tic

            print(
                f".\n.\nEnd:\n{filename=}, {elapsed=:.0f}, {estimated_time=}\n.\n.\n",
                flush=True,
            )
Mingyi's avatar
Mingyi committed
481
            return process.returncode
482
483

        try:
Mingyi's avatar
Mingyi committed
484
485
486
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
487
488
489
            assert (
                ret_code == 0
            ), f"expected return code 0, but {filename} returned {ret_code}"
490
        except TimeoutError:
491
            kill_process_tree(process.pid)
492
493
            time.sleep(5)
            print(
494
495
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
496
            )
Mingyi's avatar
Mingyi committed
497
498
            success = False
            break
499
500

    if success:
501
        print(f"Success. Time elapsed: {time.time() - tic:.2f}s", flush=True)
502
    else:
503
        print(f"Fail. Time elapsed: {time.time() - tic:.2f}s", flush=True)
504
505

    return 0 if success else -1
506
507
508
509


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
510
511


512
513
514
515
516
517
def get_benchmark_args(
    base_url="",
    dataset_name="",
    dataset_path="",
    tokenizer="",
    num_prompts=500,
518
    sharegpt_output_len=None,
519
520
    random_input_len=4096,
    random_output_len=2048,
521
    sharegpt_context_len=None,
522
523
524
    request_rate=float("inf"),
    disable_stream=False,
    disable_ignore_eos=False,
525
    seed: int = 0,
526
    pd_seperated: bool = False,
527
528
529
530
531
532
533
534
535
536
537
):
    return SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
        dataset_name=dataset_name,
        dataset_path=dataset_path,
        model=None,
        tokenizer=tokenizer,
        num_prompts=num_prompts,
538
539
        sharegpt_output_len=sharegpt_output_len,
        sharegpt_context_len=sharegpt_context_len,
540
541
542
543
544
545
546
547
548
        random_input_len=random_input_len,
        random_output_len=random_output_len,
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        output_file=None,
        disable_tqdm=False,
        disable_stream=disable_stream,
        return_logprob=False,
549
        seed=seed,
550
551
552
553
554
        disable_ignore_eos=disable_ignore_eos,
        extra_request_body=None,
        apply_chat_template=False,
        profile=None,
        lora_name=None,
555
556
        prompt_suffix="",
        pd_seperated=pd_seperated,
557
558
559
    )


560
561
562
563
564
565
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
566
567
    dataset_path="",
    tokenizer=None,
568
569
    random_input_len=4096,
    random_output_len=2048,
570
    sharegpt_context_len=None,
571
    disable_stream=False,
572
    disable_ignore_eos=False,
573
    need_warmup=False,
574
    seed: int = 0,
575
):
576
577
578
579
580
581
582
583
584
585
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
586
    args = get_benchmark_args(
587
        base_url=base_url,
588
        dataset_name=dataset_name,
589
590
        dataset_path=dataset_path,
        tokenizer=tokenizer,
591
        num_prompts=num_prompts,
592
593
        random_input_len=random_input_len,
        random_output_len=random_output_len,
594
        sharegpt_context_len=sharegpt_context_len,
595
        request_rate=request_rate,
596
        disable_stream=disable_stream,
597
        disable_ignore_eos=disable_ignore_eos,
598
        seed=seed,
599
600
601
    )

    try:
602
603
604
605
        if need_warmup:
            warmup_args = copy.deepcopy(args)
            warmup_args.num_prompts = 16
            run_benchmark(warmup_args)
606
607
        res = run_benchmark(args)
    finally:
608
        kill_process_tree(process.pid)
609
610
611

    assert res["completed"] == num_prompts
    return res
612
613


614
615
616
617
618
619
def run_bench_serving_multi(
    model,
    base_url,
    other_server_args,
    benchmark_args,
    need_warmup=False,
620
    pd_seperated=False,
621
622
623
624
625
626
627
):
    # Launch the server
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
628
        pd_seperated=pd_seperated,
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    )

    # run benchmark for all
    res_l = []
    try:
        for args in benchmark_args:
            if need_warmup:
                warmup_args = copy.deepcopy(args)
                warmup_args.num_prompts = 16
                run_benchmark(warmup_args)

            res = run_benchmark(args)
            res_l.append((args, res))
    finally:
        kill_process_tree(process.pid)

    return res_l


648
def run_bench_one_batch(model, other_args):
649
650
651
    command = [
        "python3",
        "-m",
652
        "sglang.bench_one_batch",
653
654
655
656
657
658
659
660
        "--model-path",
        model,
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
661
        *[str(x) for x in other_args],
662
663
664
665
666
667
668
669
670
671
672
673
674
    ]
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        lastline = output.split("\n")[-3]
        output_throughput = float(lastline.split(" ")[-2])
    finally:
675
        kill_process_tree(process.pid)
676
677

    return output_throughput
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711


def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
712
713
714


STDERR_FILENAME = "stderr.txt"
715
STDOUT_FILENAME = "stdout.txt"
716
717


718
def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
719
    """Print the output in real time with another thread."""
720
    while not os.path.exists(filename):
721
722
        time.sleep(1)

723
724
    pt = 0
    while pt >= 0:
725
        if pt > 0 and not os.path.exists(filename):
726
            break
727
        lines = open(filename).readlines()
728
729
        for line in lines[pt:]:
            print(line, end="", flush=True)
730
            output_lines.append(line)
731
            pt += 1
732
        time.sleep(0.1)
733
734


735
736
def run_and_check_memory_leak(
    workload_func,
737
    disable_radix_cache,
738
    enable_mixed_chunk,
739
    disable_overlap,
740
    chunked_prefill_size,
741
    assert_has_abort,
742
):
743
744
745
746
747
748
    other_args = [
        "--chunked-prefill-size",
        str(chunked_prefill_size),
        "--log-level",
        "debug",
    ]
749
750
751
752
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
753
754
    if disable_overlap:
        other_args += ["--disable-overlap-schedule"]
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

776
777
    # Run the workload
    workload_func(base_url, model)
778
779

    # Clean up everything
780
    kill_process_tree(process.pid)
781
782
    stdout.close()
    stderr.close()
783
784
785
786
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
Lianmin Zheng's avatar
Lianmin Zheng committed
787
    kill_process_tree(process.pid)
788
789
790
791
792
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
793
    has_abort = False
794
    for line in output_lines:
Lianmin Zheng's avatar
Lianmin Zheng committed
795
        if "Uvicorn running" in line:
796
797
798
            has_new_server = True
        if "leak" in line:
            has_leak = True
799
800
        if "Abort" in line:
            has_abort = True
801
802

    assert has_new_server
803
    assert not has_leak
804
805
    if assert_has_abort:
        assert has_abort
806
807


808
809
810
811
def run_command_and_capture_output(command, env: Optional[dict] = None):
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = subprocess.Popen(
812
        command, stdout=stdout, stderr=stdout, env=env, text=True
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines, STDOUT_FILENAME))
    t.start()

    # Join the process
    process.wait()

    stdout.close()
    stderr.close()
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
    kill_process_tree(process.pid)
    t.join()

    return output_lines


835
836
837
def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
838
    disable_overlap=False,
839
840
841
842
843
844
845
846
847
848
849
850
851
852
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
853
            assert metrics["score"] >= 0.65, f"{metrics=}"
854
855
856
        finally:
            pass

Chayenne's avatar
Chayenne committed
857
858
859
860
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
861
        disable_overlap,
Chayenne's avatar
Chayenne committed
862
        chunked_prefill_size,
863
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
864
    )
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):

    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
897
898
899
900
901
902
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
903
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
904
    )
905
906
907
908
909


def write_github_step_summary(content):
    with open(os.environ["GITHUB_STEP_SUMMARY"], "a") as f:
        f.write(content)
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984


def run_logprob_check(self: unittest.TestCase, arg: Tuple):
    (
        input_len,
        output_len,
        temperature,
        logprob_start_len,
        return_logprob,
        top_logprobs_num,
    ) = arg
    input_ids = list(range(input_len))

    response = requests.post(
        self.base_url + "/generate",
        json={
            "input_ids": input_ids,
            "sampling_params": {
                "temperature": temperature,
                "max_new_tokens": output_len,
                "ignore_eos": True,
            },
            "return_logprob": return_logprob,
            "logprob_start_len": logprob_start_len,
            "top_logprobs_num": top_logprobs_num,
        },
    )
    response_json = response.json()

    res = response_json
    self.assertEqual(res["meta_info"]["prompt_tokens"], input_len)
    self.assertEqual(res["meta_info"]["completion_tokens"], output_len)

    # Test the number of tokens are correct
    if return_logprob:
        self.assertEqual(
            len(res["meta_info"]["input_token_logprobs"]) + logprob_start_len,
            res["meta_info"]["prompt_tokens"],
        )
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), output_len)

        if top_logprobs_num:
            self.assertEqual(
                len(res["meta_info"]["input_top_logprobs"]) + logprob_start_len,
                res["meta_info"]["prompt_tokens"],
            )
            self.assertEqual(len(res["meta_info"]["output_top_logprobs"]), output_len)

            for i in range(output_len):
                self.assertEqual(
                    len(res["meta_info"]["output_top_logprobs"][i]),
                    top_logprobs_num,
                )

                # Test the top-1 tokens are the same as output tokens if temperature == 0
                if temperature == 0:
                    rank = 0
                    while rank < len(res["meta_info"]["output_top_logprobs"][i]):
                        try:
                            self.assertListEqual(
                                res["meta_info"]["output_token_logprobs"][i],
                                res["meta_info"]["output_top_logprobs"][i][rank],
                            )
                            break
                        except AssertionError:
                            # There's a tie. Allow the second item in this case.
                            if (
                                res["meta_info"]["output_top_logprobs"][i][rank][0]
                                == res["meta_info"]["output_top_logprobs"][i][rank + 1][
                                    0
                                ]
                            ):
                                rank += 1
                            else:
                                raise