test_utils.py 4.71 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""Common utilities for testing and benchmarking"""
import numpy as np
import requests
from sglang.backend.openai import OpenAI
from sglang.backend.runtime_endpoint import RuntimeEndpoint
from sglang.global_config import global_config


def call_generate_lightllm(prompt, temperature, max_tokens, stop, url):
    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


def call_generate_vllm(prompt, temperature, max_tokens, stop, url, n=1):
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def call_generate_outlines(
    prompt, temperature, max_tokens, url, stop=[], regex=None, n=1
):
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Lianmin Zheng's avatar
Lianmin Zheng committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def call_generate_srt_raw(prompt, temperature, max_tokens, stop, url):
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


def call_select_lightllm(context, choices, url):
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


def call_select_vllm(context, choices, url):
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
102
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
103
104
105
106
107
108
109
110
111
112
113
114
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


def add_common_other_args_and_parse(parser):
Lianmin Zheng's avatar
Lianmin Zheng committed
115
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
        choices=["vllm", "lightllm", "guidance", "lmql", "srt-raw", "llama.cpp"],
    )
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
            "lightllm": 22000,
            "lmql": 23000,
            "srt-raw": 30000,
        }
        args.port = default_port.get(args.backend, None)
    return args


def add_common_sglang_args_and_parse(parser):
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


def select_sglang_backend(args):
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_decoding = False
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
    elif args.backend.startswith("gpt"):
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend