adapter.py 75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
15

16
import asyncio
17
import json
18
import logging
19
import os
20
21
import time
import uuid
22
from http import HTTPStatus
Lianmin Zheng's avatar
Lianmin Zheng committed
23
from typing import Dict, List
24

25
from fastapi import HTTPException, Request, UploadFile
26
from fastapi.responses import ORJSONResponse, StreamingResponse
27
from pydantic import ValidationError
28

29
30
31
32
from sglang.srt.code_completion_parser import (
    generate_completion_prompt_from_request,
    is_completion_template_defined,
)
33
34
35
36
37
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
38
    generate_embedding_convs,
39
40
    register_conv_template,
)
41
from sglang.srt.function_call_parser import FunctionCallParser
Ying Sheng's avatar
Ying Sheng committed
42
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
43
from sglang.srt.openai_api.protocol import (
44
45
    BatchRequest,
    BatchResponse,
46
47
48
49
50
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
51
    ChatCompletionTokenLogprob,
52
    ChatMessage,
53
    ChoiceLogprobs,
54
55
56
57
58
59
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
60
    EmbeddingObject,
61
62
    EmbeddingRequest,
    EmbeddingResponse,
63
    ErrorResponse,
64
    FileDeleteResponse,
65
66
    FileRequest,
    FileResponse,
Tanjiro's avatar
Tanjiro committed
67
    FunctionResponse,
68
    LogProbs,
69
    MultimodalEmbeddingInput,
Tanjiro's avatar
Tanjiro committed
70
    ToolCall,
71
    TopLogprob,
72
73
    UsageInfo,
)
Xihuai Wang's avatar
Xihuai Wang committed
74
from sglang.srt.reasoning_parser import ReasoningParser
75
from sglang.utils import convert_json_schema_to_str, get_exception_traceback
76

77
78
logger = logging.getLogger(__name__)

79
80
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
81

82
83
84
85
86
87
88
89
90
91
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
92
# map file id to file path in SGLang backend
93
94
95
96
97
98
file_id_storage: Dict[str, str] = {}

# backend storage directory
storage_dir = None


99
100
101
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
102
103
104
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
105
    return ORJSONResponse(content=error.model_dump(), status_code=error.code)
106
107
108
109
110


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
111
112
113
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
114
115
116
117
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


118
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg, model_path):
119
120
    global chat_template_name

121
122
123
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
124

125
126
127
128
129
130
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
131
132
133
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
134
135
136
            tokenizer_manager.tokenizer.chat_template = chat_template.replace(
                "\\n", "\n"
            )
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
163
164
165
    else:
        chat_template_name = chat_template_arg

166
167
168
169
    # Check chat-template
    # TODO:
    # 1. Do not import any code from sglang.lang
    # 2. For VLM, when chat_template_arg is None, set it automatically by guessing from model_path.
170

171

172
173
174
async def v1_files_create(
    file: UploadFile, purpose: str, file_storage_path: str = None
):
175
176
    try:
        global storage_dir
177
178
        if file_storage_path:
            storage_dir = file_storage_path
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


213
214
215
216
217
218
219
220
221
222
223
224
225
226
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


227
async def v1_batches(tokenizer_manager, raw_request: Request):
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
248
        asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))
249
250
251
252
253
254
255
256
257
258

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


259
async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
283
        request_ids = []
284
        for line_id, line in enumerate(lines):
285
286
287
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
288
            request_ids.append(f"{batch_id}-req_{line_id}")
289
290
291
292
293
294

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

295
296
297
298
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
299

300
301
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
302
                all_requests, tokenizer_manager, request_ids=request_ids
303
304
            )
        elif end_point == "/v1/completions":
305
306
307
308
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

309
        try:
310
            created = int(time.time())
311
            ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
312
313
314
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
315
316
317
                responses = v1_chat_generate_response(
                    request,
                    ret,
318
                    created,
319
                    to_file=True,
320
321
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
                    tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
322
                )
323
            else:
yichuan~'s avatar
yichuan~ committed
324
                responses = v1_generate_response(
325
326
327
328
329
330
                    request,
                    ret,
                    tokenizer_manager,
                    created,
                    to_file=True,
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
yichuan~'s avatar
yichuan~ committed
331
                )
332
333

        except Exception as e:
334
335
            logger.error(f"error: {get_exception_traceback()}")
            responses = []
336
337
338
339
340
341
342
343
344
345
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
346
            # the batch_req here can be changed to be named within a batch granularity
347
348
349
350
351
352
353
354
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
355

356
357
358
359
360
361
362
363
364
365
366
367
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
368
369
370
371
372
373
374
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
375
376
377
378
379
380
381
382
383
384
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
385
        logger.error(f"error: {e}")
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


402
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
403
404
405
406
407
408
409
410
411
412
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
413
                tokenizer_manager=tokenizer_manager,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


430
async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        # Cancel requests by request_ids
446
447
        for line_id in range(len(lines)):
            rid = f"{batch_id}-req_{line_id}"
448
            tokenizer_manager.abort_request(rid=rid)
449
450
451
452
453
454
455
456
457
458
459
460
461

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


482
483
484
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
485
486
487
488
489
490
491
492
493
494
495
    if len(all_requests) > 1:
        first_prompt_type = type(all_requests[0].prompt)
        for request in all_requests:
            assert (
                type(request.prompt) is first_prompt_type
            ), "All prompts must be of the same type in file input settings"
            if request.n > 1:
                raise ValueError(
                    "Parallel sampling is not supported for completions from files"
                )

496
497
    prompts = []
    sampling_params_list = []
498
    return_logprobs = []
499
    logprob_start_lens = []
500
    top_logprobs_nums = []
501
    lora_paths = []
yichuan~'s avatar
yichuan~ committed
502

503
    for request in all_requests:
504
        # NOTE: with openai API, the prompt's logprobs are always not computed
505
        if request.echo and request.logprobs:
506
            logger.warning(
507
                "Echo is not compatible with logprobs. "
508
                "To compute logprobs of input prompt, please use the native /generate API."
509
510
            )

511
512
513
514
515
        prompt = request.prompt
        if is_completion_template_defined():
            prompt = generate_completion_prompt_from_request(request)
        prompts.append(prompt)

516
        lora_paths.append(request.lora_path)
517
518
519
520
        if request.echo and request.logprobs:
            current_logprob_start_len = 0
        else:
            current_logprob_start_len = -1
521
522
523
524
525
526
527
528
        sampling_params_list.append(
            {
                "temperature": request.temperature,
                "max_new_tokens": request.max_tokens,
                "min_new_tokens": request.min_tokens,
                "stop": request.stop,
                "stop_token_ids": request.stop_token_ids,
                "top_p": request.top_p,
529
530
                "top_k": request.top_k,
                "min_p": request.min_p,
531
532
533
534
535
                "presence_penalty": request.presence_penalty,
                "frequency_penalty": request.frequency_penalty,
                "repetition_penalty": request.repetition_penalty,
                "regex": request.regex,
                "json_schema": request.json_schema,
536
                "ebnf": request.ebnf,
537
538
                "n": request.n,
                "no_stop_trim": request.no_stop_trim,
539
540
                "ignore_eos": request.ignore_eos,
                "skip_special_tokens": request.skip_special_tokens,
541
542
            }
        )
543
        return_logprobs.append(request.logprobs is not None)
544
        logprob_start_lens.append(current_logprob_start_len)
545
546
547
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
548
549

    if len(all_requests) == 1:
550
551
552
553
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
            prompt_kwargs = {"text": prompts[0]}
        else:
            prompt_kwargs = {"input_ids": prompts[0]}
554
        sampling_params_list = sampling_params_list[0]
555
        return_logprobs = return_logprobs[0]
556
        logprob_start_lens = logprob_start_lens[0]
557
        top_logprobs_nums = top_logprobs_nums[0]
558
        lora_paths = lora_paths[0]
559
    else:
560
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
561
562
563
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
564

565
    adapted_request = GenerateReqInput(
566
        **prompt_kwargs,
567
        sampling_params=sampling_params_list,
568
569
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
570
        logprob_start_len=logprob_start_lens,
571
        return_text_in_logprobs=True,
572
        stream=all_requests[0].stream,
573
        rid=request_ids,
574
        lora_path=lora_paths,
575
    )
yichuan~'s avatar
yichuan~ committed
576

577
    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
578
579


580
581
582
def v1_generate_response(
    request, ret, tokenizer_manager, created, to_file=False, cache_report=False
):
583
584
585
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
586
    if (not isinstance(request, list)) and request.echo:
587
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
588
589
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
590
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
591
592
593
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
594
                tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
yichuan~'s avatar
yichuan~ committed
595
596
597
598
599
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
600
601
602
                tokenizer_manager.tokenizer.decode(
                    request.prompt, skip_special_tokens=True
                )
yichuan~'s avatar
yichuan~ committed
603
            ]
604
        else:
yichuan~'s avatar
yichuan~ committed
605
            # for the case of single str prompt
606
607
608
609
610
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
611
        if isinstance(request, list) and request[idx].echo:
612
613
            echo = True
            text = request[idx].prompt + text
614
        if echo and not isinstance(request, list):
yichuan~'s avatar
yichuan~ committed
615
616
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
617
618

        logprobs = False
619
        if isinstance(request, list) and request[idx].logprobs is not None:
620
            logprobs = True
621
        elif (not isinstance(request, list)) and request.logprobs is not None:
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

640
641
        finish_reason = ret_item["meta_info"]["finish_reason"]

642
        if to_file:
643
            # to make the choise data json serializable
644
645
646
647
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
648
                "finish_reason": finish_reason["type"] if finish_reason else None,
649
650
651
652
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
653
                ),
654
655
656
657
658
659
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
660
                finish_reason=finish_reason["type"] if finish_reason else None,
661
662
663
664
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
665
                ),
666
667
668
669
670
671
672
673
674
675
676
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
677
                    # remain the same but if needed we can change that
678
679
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
680
                    "created": created,
681
682
683
684
685
686
687
688
689
690
691
692
693
694
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
695
696
697
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
698
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
699
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
700
701
702
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
703
            created=created,
704
705
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
706
                prompt_tokens=prompt_tokens,
707
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
708
                total_tokens=prompt_tokens + completion_tokens,
709
710
711
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
712
713
714
715
716
            ),
        )
    return response


717
async def v1_completions(tokenizer_manager, raw_request: Request):
718
719
720
721
    try:
        request_json = await raw_request.json()
    except Exception as e:
        return create_error_response("Invalid request body, error: ", str(e))
722
    all_requests = [CompletionRequest(**request_json)]
723
    created = int(time.time())
724
    adapted_request, request = v1_generate_request(all_requests)
725
726
727
728

    if adapted_request.stream:

        async def generate_stream_resp():
729
730
731
732
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
733
734
            cached_tokens = {}

735
            try:
736
                async for content in tokenizer_manager.generate_request(
737
738
                    adapted_request, raw_request
                ):
739
                    index = content.get("index", 0)
740
741
742
743

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

744
                    text = content["text"]
745
746
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
747
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
748
749
750

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
751
752
753
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
754
755
756
757
758
759
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
760
                                    prompts = tokenizer_manager.tokenizer.decode(
761
762
763
764
765
766
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
767
                                    prompts = tokenizer_manager.tokenizer.decode(
768
769
770
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
771

772
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
773
                            text = prompts + text
774

775
                    if request.logprobs is not None:
776
777
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
778
779
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
780
                            ]
781
782
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
783
784
                            ]
                        else:
785
786
                            input_token_logprobs = None
                            input_top_logprobs = None
787
788

                        logprobs = to_openai_style_logprobs(
789
790
791
792
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
793
                            ][n_prev_token:],
794
795
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
796
                            ][n_prev_token:],
797
                        )
798
                        n_prev_token = len(
799
                            content["meta_info"]["output_token_logprobs"]
800
                        )
801
                    else:
802
                        logprobs = None
803

804
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
805
                    stream_buffer = stream_buffer + delta
806
                    finish_reason = content["meta_info"]["finish_reason"]
807
                    choice_data = CompletionResponseStreamChoice(
808
                        index=index,
809
810
                        text=delta,
                        logprobs=logprobs,
811
                        finish_reason=finish_reason["type"] if finish_reason else None,
812
813
814
815
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
816
                        ),
817
818
819
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
820
                        created=created,
821
822
823
824
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
825
826
827
828

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

829
                    yield f"data: {chunk.model_dump_json()}\n\n"
830
                if request.stream_options and request.stream_options.include_usage:
831
832
833
834
835
836
837
838
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
839
840
841
842
843
844
845
846
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
847
                    usage = UsageInfo(
848
849
850
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
851
                        prompt_tokens_details=prompt_tokens_details,
852
853
854
                    )

                    final_usage_chunk = CompletionStreamResponse(
855
                        id=content["meta_info"]["id"],
856
                        created=created,
857
858
859
860
861
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
862
                        exclude_none=True
863
864
                    )
                    yield f"data: {final_usage_data}\n\n"
865
866
867
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
868
869
            yield "data: [DONE]\n\n"

870
871
872
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
873
            background=tokenizer_manager.create_abort_task(adapted_request),
874
        )
875
876

    # Non-streaming response.
877
    try:
878
        ret = await tokenizer_manager.generate_request(
879
880
            adapted_request, raw_request
        ).__anext__()
881
882
    except ValueError as e:
        return create_error_response(str(e))
883

884
885
886
    if not isinstance(ret, list):
        ret = [ret]

887
888
889
890
891
892
893
    response = v1_generate_response(
        request,
        ret,
        tokenizer_manager,
        created,
        cache_report=tokenizer_manager.server_args.enable_cache_report,
    )
894
    return response
895

896

897
def v1_chat_generate_request(
898
    all_requests: List[ChatCompletionRequest],
899
    tokenizer_manager,
900
    request_ids: List[str] = None,
901
):
902
    input_ids = []
Mick's avatar
Mick committed
903
    prompts = []
904
905
    sampling_params_list = []
    image_data_list = []
Mick's avatar
Mick committed
906
    audio_data_list = []
907
    return_logprobs = []
908
    logprob_start_lens = []
909
    top_logprobs_nums = []
910
    modalities_list = []
911
    lora_paths = []
912
913
914

    # NOTE: with openai API, the prompt's logprobs are always not computed

915
    is_multimodal = tokenizer_manager.model_config.is_multimodal
916
917
918
919
920
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
Mick's avatar
Mick committed
921
        #  - audio_data: None or a list of audio strings (URLs).
922
        #    None skips any image processing in GenerateReqInput.
923
        strict_tag = None
Mick's avatar
Mick committed
924
        prompt = ""
925
        prompt_ids = []
926
927
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
Tanjiro's avatar
Tanjiro committed
928
929
930
931
932
933
934
935
936
937
938
939
            tools = None
            if request.tools and request.tool_choice != "none":
                request.skip_special_tokens = False
                if not isinstance(request.tool_choice, str):
                    tools = [
                        item.function.model_dump()
                        for item in request.tools
                        if item.function.name == request.tool_choice.function.name
                    ]
                else:
                    tools = [item.function.model_dump() for item in request.tools]

940
941
942
943
                tool_call_parser = tokenizer_manager.server_args.tool_call_parser
                parser = FunctionCallParser(request.tools, tool_call_parser)
                strict_tag = parser.get_structure_tag()

944
            if chat_template_name is None:
945
                openai_compatible_messages = []
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
                if (
                    tools
                    and tokenizer_manager.server_args.tool_call_parser == "deepseekv3"
                ):
                    # add function call prompt to deepseekv3
                    openai_compatible_messages.append(
                        {
                            "role": "system",
                            "content": """You are a helpful Assistant.
                    ## Tools
                    ### Function
                    You have the following functions available:
                    """
                            + "".join(
                                [
                                    f"""
                        - `{tool['name']}`:
                        ```json
                        {json.dumps(tool)}
                        ```
                        """
                                    for tool in tools
                                ]
                            ),
                        }
                    )

973
                for message in request.messages:
974
975
                    if message.content is None:
                        message.content = ""
976
977
978
979
980
981
982
983
984
985
986
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
987
988
989
990
991
992
993
994
995
996
                if (
                    openai_compatible_messages
                    and openai_compatible_messages[-1]["role"] == "assistant"
                ):
                    if request.continue_final_message:
                        # Remove the final assistant message so its content can be continued.
                        assistant_prefix = openai_compatible_messages[-1]["content"]
                        openai_compatible_messages = openai_compatible_messages[:-1]
                    else:
                        assistant_prefix = None
997
998
                else:
                    assistant_prefix = None
YAMY's avatar
YAMY committed
999
1000

                try:
1001
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
1002
1003
1004
1005
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
1006
1007
1008
1009
1010
                        **(
                            request.chat_template_kwargs
                            if request.chat_template_kwargs
                            else {}
                        ),
YAMY's avatar
YAMY committed
1011
1012
1013
                    )
                except:
                    #  This except branch will be triggered when the chosen model
Mick's avatar
Mick committed
1014
                    #  has a different tools input format that is not compatible
YAMY's avatar
YAMY committed
1015
1016
                    #  with openAI's apply_chat_template tool_call format, like Mistral.
                    tools = [t if "function" in t else {"function": t} for t in tools]
1017
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
1018
1019
1020
1021
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
1022
1023
1024
1025
1026
                        **(
                            request.chat_template_kwargs
                            if request.chat_template_kwargs
                            else {}
                        ),
YAMY's avatar
YAMY committed
1027
1028
                    )

1029
                if assistant_prefix:
1030
1031
1032
1033
1034
                    encoded = tokenizer_manager.tokenizer.encode(assistant_prefix)
                    if (
                        encoded
                        and encoded[0] == tokenizer_manager.tokenizer.bos_token_id
                    ):
1035
1036
                        encoded = encoded[1:]
                    prompt_ids += encoded
1037
                if is_multimodal:
1038
                    prompt = tokenizer_manager.tokenizer.decode(prompt_ids)
1039
1040
                stop = request.stop
                image_data = None
Mick's avatar
Mick committed
1041
                audio_data = None
1042
                modalities = []
1043
            else:
1044
                conv = generate_chat_conv(request, chat_template_name)
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
                # If we should continue the final assistant message, adjust the conversation.
                if (
                    request.continue_final_message
                    and request.messages
                    and request.messages[-1].role == "assistant"
                ):
                    # Remove the auto-added blank assistant turn, if present.
                    if conv.messages and conv.messages[-1][1] is None:
                        conv.messages.pop()
                    # Rebuild the prompt from the conversation.
                    prompt = conv.get_prompt()
                    # Strip any trailing stop tokens or separators that indicate end-of-assistant.
                    if isinstance(conv.stop_str, list):
                        for stop_token in conv.stop_str:
                            if prompt.endswith(stop_token):
                                prompt = prompt[: -len(stop_token)]
                    elif isinstance(conv.stop_str, str) and prompt.endswith(
                        conv.stop_str
                    ):
                        prompt = prompt[: -len(conv.stop_str)]
                    if conv.sep and prompt.endswith(conv.sep):
                        prompt = prompt[: -len(conv.sep)]
                    if getattr(conv, "sep2", None) and prompt.endswith(conv.sep2):
                        prompt = prompt[: -len(conv.sep2)]
                else:
                    prompt = conv.get_prompt()

1072
                image_data = conv.image_data
Mick's avatar
Mick committed
1073
                audio_data = conv.audio_data
1074
                modalities = conv.modalities
1075
1076
                stop = conv.stop_str or [] if not request.ignore_eos else []

1077
1078
1079
1080
1081
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
1082

1083
1084
                if not is_multimodal:
                    prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
1085
        else:
1086
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
1087
            prompt_ids = request.messages
1088
1089
            stop = request.stop
            image_data = None
Mick's avatar
Mick committed
1090
            audio_data = None
1091
            modalities = []
Mick's avatar
Mick committed
1092
            prompt = request.messages
1093
        input_ids.append(prompt_ids)
1094
        return_logprobs.append(request.logprobs)
1095
        logprob_start_lens.append(-1)
1096
        top_logprobs_nums.append(request.top_logprobs or 0)
1097
        lora_paths.append(request.lora_path)
Mick's avatar
Mick committed
1098
        prompts.append(prompt)
1099
1100
1101

        sampling_params = {
            "temperature": request.temperature,
1102
            "max_new_tokens": request.max_tokens or request.max_completion_tokens,
1103
1104
1105
1106
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
1107
1108
            "top_k": request.top_k,
            "min_p": request.min_p,
1109
1110
1111
1112
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
1113
            "ebnf": request.ebnf,
1114
            "n": request.n,
1115
            "no_stop_trim": request.no_stop_trim,
1116
            "ignore_eos": request.ignore_eos,
1117
            "skip_special_tokens": request.skip_special_tokens,
1118
        }
1119

1120
1121
1122
1123
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
1124
1125
        elif request.response_format and request.response_format.type == "json_object":
            sampling_params["json_schema"] = '{"type": "object"}'
1126
1127
1128
1129
1130
1131
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

        if strict_tag is not None:
            if (
                sampling_params.get("regex")
                or sampling_params.get("ebnf")
                or sampling_params.get("structural_tag")
                or sampling_params.get("json_schema")
            ):
                logger.warning(
                    "Constrained decoding is not compatible with tool calls."
                )
            else:
                sampling_params["structural_tag"] = convert_json_schema_to_str(
                    strict_tag.model_dump(by_alias=True)
                )

1148
1149
        sampling_params_list.append(sampling_params)

1150
        image_data_list.append(image_data)
Mick's avatar
Mick committed
1151
        audio_data_list.append(audio_data)
1152
        modalities_list.append(modalities)
1153
    if len(all_requests) == 1:
1154
        if is_multimodal:
Mick's avatar
Mick committed
1155
1156
            # processor will need text input
            prompt_kwargs = {"text": prompts[0]}
yichuan~'s avatar
yichuan~ committed
1157
        else:
Mick's avatar
Mick committed
1158
1159
1160
1161
            if isinstance(input_ids[0], str):
                prompt_kwargs = {"text": input_ids[0]}
            else:
                prompt_kwargs = {"input_ids": input_ids[0]}
1162
        sampling_params_list = sampling_params_list[0]
1163
        image_data_list = image_data_list[0]
Mick's avatar
Mick committed
1164
        audio_data_list = audio_data_list[0]
1165
        return_logprobs = return_logprobs[0]
1166
        logprob_start_lens = logprob_start_lens[0]
1167
        top_logprobs_nums = top_logprobs_nums[0]
1168
        modalities_list = modalities_list[0]
1169
        lora_paths = lora_paths[0]
yichuan~'s avatar
yichuan~ committed
1170
    else:
Mick's avatar
Mick committed
1171
1172
1173
        if tokenizer_manager.model_config.is_multimodal:
            # processor will need text input
            prompt_kwargs = {"text": prompts}
yichuan~'s avatar
yichuan~ committed
1174
        else:
Mick's avatar
Mick committed
1175
1176
1177
1178
            if isinstance(input_ids[0], str):
                prompt_kwargs = {"text": input_ids}
            else:
                prompt_kwargs = {"input_ids": input_ids}
1179

1180
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
1181
        **prompt_kwargs,
1182
        image_data=image_data_list,
Mick's avatar
Mick committed
1183
        audio_data=audio_data_list,
1184
        sampling_params=sampling_params_list,
1185
        return_logprob=return_logprobs,
1186
        logprob_start_len=logprob_start_lens,
1187
1188
1189
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
1190
        rid=request_ids,
1191
        modalities=modalities_list,
1192
        lora_path=lora_paths,
1193
        bootstrap_host=all_requests[0].bootstrap_host,
1194
        bootstrap_port=all_requests[0].bootstrap_port,
1195
        bootstrap_room=all_requests[0].bootstrap_room,
1196
    )
1197
1198

    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
1199

1200

YAMY's avatar
YAMY committed
1201
def v1_chat_generate_response(
Xihuai Wang's avatar
Xihuai Wang committed
1202
1203
    request,
    ret,
1204
    created,
Xihuai Wang's avatar
Xihuai Wang committed
1205
1206
1207
1208
    to_file=False,
    cache_report=False,
    tool_call_parser=None,
    reasoning_parser=None,
YAMY's avatar
YAMY committed
1209
):
1210
1211
1212
    choices = []

    for idx, ret_item in enumerate(ret):
1213
        logprobs = False
yichuan~'s avatar
yichuan~ committed
1214
        if isinstance(request, list) and request[idx].logprobs:
1215
            logprobs = True
yichuan~'s avatar
yichuan~ committed
1216
        elif (not isinstance(request, list)) and request.logprobs:
1217
1218
1219
1220
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
1221
1222
1223
                output_top_logprobs=ret_item["meta_info"].get(
                    "output_top_logprobs", None
                ),
1224
1225
            )
            token_logprobs = []
1226
1227
1228
            for token_idx, (token, logprob) in enumerate(
                zip(logprobs.tokens, logprobs.token_logprobs)
            ):
1229
1230
1231
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
1232
1233
1234
                    for top_token, top_logprob in logprobs.top_logprobs[
                        token_idx
                    ].items():
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1255

1256
1257
        finish_reason = ret_item["meta_info"]["finish_reason"]

Tanjiro's avatar
Tanjiro committed
1258
1259
1260
        tool_calls = None
        text = ret_item["text"]

1261
        enable_thinking = True
Tanjiro's avatar
Tanjiro committed
1262
1263
1264
        if isinstance(request, list):
            tool_choice = request[idx].tool_choice
            tools = request[idx].tools
Xihuai Wang's avatar
Xihuai Wang committed
1265
            separate_reasoning = request[idx].separate_reasoning
1266
1267
1268
1269
1270
1271
1272
1273

            if (
                request[idx].chat_template_kwargs
                and request[idx].chat_template_kwargs.get("enable_thinking") is not None
            ):
                enable_thinking = request[idx].chat_template_kwargs.get(
                    "enable_thinking", True
                )
Tanjiro's avatar
Tanjiro committed
1274
1275
1276
        else:
            tool_choice = request.tool_choice
            tools = request.tools
Xihuai Wang's avatar
Xihuai Wang committed
1277
1278
            separate_reasoning = request.separate_reasoning

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
            if (
                request.chat_template_kwargs
                and request.chat_template_kwargs.get("enable_thinking") is not None
            ):
                enable_thinking = request.chat_template_kwargs.get(
                    "enable_thinking", True
                )

        reasoning_text = None
        if reasoning_parser and separate_reasoning and enable_thinking:
Xihuai Wang's avatar
Xihuai Wang committed
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
            try:
                parser = ReasoningParser(
                    model_type=reasoning_parser, stream_reasoning=False
                )
                reasoning_text, text = parser.parse_non_stream(text)
            except Exception as e:
                logger.error(f"Exception: {e}")
                return create_error_response(
                    HTTPStatus.BAD_REQUEST,
                    "Failed to parse reasoning related info to json format!",
                )
Tanjiro's avatar
Tanjiro committed
1300

1301
1302
1303
1304
1305
1306
1307
        if tool_choice != "none" and tools:
            parser = FunctionCallParser(tools, tool_call_parser)
            if parser.has_tool_call(text):
                if finish_reason["type"] == "stop":
                    finish_reason["type"] = "tool_calls"
                    finish_reason["matched"] = None
                try:
1308
                    text, call_info_list = parser.parse_non_stream(text)
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
                    tool_calls = [
                        ToolCall(
                            id=str(call_info.tool_index),
                            function=FunctionResponse(
                                name=call_info.name, arguments=call_info.parameters
                            ),
                        )
                        for call_info in call_info_list
                    ]
                except Exception as e:
                    logger.error(f"Exception: {e}")
                    return create_error_response(
                        HTTPStatus.BAD_REQUEST,
                        "Failed to parse fc related info to json format!",
Tanjiro's avatar
Tanjiro committed
1323
1324
                    )

1325
        if to_file:
1326
            # to make the choice data json serializable
1327
1328
            choice_data = {
                "index": 0,
Tanjiro's avatar
Tanjiro committed
1329
1330
                "message": {
                    "role": "assistant",
1331
                    "content": text if text else None,
Tanjiro's avatar
Tanjiro committed
1332
                    "tool_calls": tool_calls,
1333
                    "reasoning_content": reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1334
                },
1335
                "logprobs": choice_logprobs.model_dump() if choice_logprobs else None,
1336
                "finish_reason": finish_reason["type"] if finish_reason else None,
1337
1338
1339
1340
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1341
                ),
1342
            }
1343
        else:
1344
1345
            choice_data = ChatCompletionResponseChoice(
                index=idx,
Tanjiro's avatar
Tanjiro committed
1346
1347
                message=ChatMessage(
                    role="assistant",
1348
                    content=text if text else None,
Tanjiro's avatar
Tanjiro committed
1349
                    tool_calls=tool_calls,
1350
                    reasoning_content=reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1351
                ),
1352
                logprobs=choice_logprobs,
1353
                finish_reason=finish_reason["type"] if finish_reason else None,
1354
1355
1356
1357
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1358
                ),
1359
1360
1361
            )

        choices.append(choice_data)
1362

1363
1364
1365
1366
1367
1368
1369
1370
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1371
                    # remain the same but if needed we can change that
1372
1373
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
1374
                    "created": created,
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1388
    else:
1389
1390
1391
1392
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1393
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
1394
1395
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
1396
            created=created,
1397
1398
1399
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1400
1401
1402
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1403
1404
1405
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
1406
1407
1408
            ),
        )
        return response
1409

1410

1411
1412
1413
async def v1_chat_completions(
    tokenizer_manager, raw_request: Request, cache_report=False
):
1414
1415
1416
1417
    try:
        request_json = await raw_request.json()
    except Exception as e:
        return create_error_response("Invalid request body, error: ", str(e))
1418
    all_requests = [ChatCompletionRequest(**request_json)]
1419
    created = int(time.time())
1420
    adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
1421
1422

    if adapted_request.stream:
YAMY's avatar
YAMY committed
1423
        parser_dict = {}
Xihuai Wang's avatar
Xihuai Wang committed
1424
        reasoning_parser_dict = {}
1425
1426

        async def generate_stream_resp():
1427
1428
1429
1430
1431
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1432
            cached_tokens = {}
1433
            try:
1434
                async for content in tokenizer_manager.generate_request(
1435
1436
                    adapted_request, raw_request
                ):
1437
                    index = content.get("index", 0)
YAMY's avatar
YAMY committed
1438
                    text = content["text"]
1439
1440
1441
1442
1443
1444
1445

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
1446
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
yichuan~'s avatar
yichuan~ committed
1447
1448
1449
1450
1451
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
1452
1453
1454
                            output_top_logprobs=content["meta_info"].get(
                                "output_top_logprobs", []
                            )[n_prev_token:],
yichuan~'s avatar
yichuan~ committed
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1492
                    finish_reason = content["meta_info"]["finish_reason"]
Xihuai Wang's avatar
Xihuai Wang committed
1493
1494
1495
                    finish_reason_type = (
                        finish_reason["type"] if finish_reason else None
                    )
1496

1497
1498
1499
                    if is_first:
                        # First chunk with role
                        is_first = False
1500
                        delta = DeltaMessage(role="assistant")
1501
                        choice_data = ChatCompletionResponseStreamChoice(
1502
                            index=index,
Xihuai Wang's avatar
Xihuai Wang committed
1503
                            delta=delta,
1504
                            finish_reason=finish_reason_type,
1505
1506
1507
1508
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
1509
                            ),
yichuan~'s avatar
yichuan~ committed
1510
                            logprobs=choice_logprobs,
1511
1512
1513
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
1514
                            created=created,
1515
1516
1517
1518
1519
1520
1521
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
YAMY's avatar
YAMY committed
1522
                    new_stream_buffer = stream_buffer + delta
1523

Xihuai Wang's avatar
Xihuai Wang committed
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
                    if (
                        tokenizer_manager.server_args.reasoning_parser
                        and request.separate_reasoning
                    ):
                        if index not in reasoning_parser_dict:
                            reasoning_parser_dict[index] = ReasoningParser(
                                tokenizer_manager.server_args.reasoning_parser,
                                request.stream_reasoning,
                            )
                        reasoning_parser = reasoning_parser_dict[index]
                        reasoning_text, delta = reasoning_parser.parse_stream_chunk(
                            delta
                        )
                        if reasoning_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1540
1541
1542
1543
1544
                                delta=DeltaMessage(
                                    reasoning_content=(
                                        reasoning_text if reasoning_text else None
                                    )
                                ),
1545
                                finish_reason=finish_reason_type,
Xihuai Wang's avatar
Xihuai Wang committed
1546
1547
1548
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1549
                                created=created,
Xihuai Wang's avatar
Xihuai Wang committed
1550
1551
1552
1553
1554
1555
1556
1557
1558
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                        if (delta and len(delta) == 0) or not delta:
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                            continue

YAMY's avatar
YAMY committed
1559
1560
1561
1562
                    if request.tool_choice != "none" and request.tools:
                        if index not in parser_dict:
                            parser_dict[index] = FunctionCallParser(
                                tools=request.tools,
1563
                                tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
YAMY's avatar
YAMY committed
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
                            )
                        parser = parser_dict[index]

                        # parse_increment => returns (normal_text, calls)
                        normal_text, calls = parser.parse_stream_chunk(delta)

                        # 1) if there's normal_text, output it as normal content
                        if normal_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1574
1575
1576
                                delta=DeltaMessage(
                                    content=normal_text if normal_text else None
                                ),
1577
                                finish_reason=finish_reason_type,
YAMY's avatar
YAMY committed
1578
1579
1580
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1581
                                created=created,
YAMY's avatar
YAMY committed
1582
1583
1584
1585
1586
1587
1588
1589
1590
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"

                        # 2) if we found calls, we output them as separate chunk(s)
                        for call_item in calls:
                            # transform call_item -> FunctionResponse + ToolCall

1591
                            if finish_reason_type == "stop":
YAMY's avatar
YAMY committed
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
                                latest_delta_len = 0
                                if isinstance(call_item.parameters, str):
                                    latest_delta_len = len(call_item.parameters)

                                expected_call = json.dumps(
                                    parser.multi_format_parser.detectors[0]
                                    .prev_tool_call_arr[index]
                                    .get("arguments", {}),
                                    ensure_ascii=False,
                                )
                                actual_call = parser.multi_format_parser.detectors[
                                    0
                                ].streamed_args_for_tool[index]
                                if latest_delta_len > 0:
                                    actual_call = actual_call[:-latest_delta_len]
                                remaining_call = expected_call.replace(
                                    actual_call, "", 1
                                )
                                call_item.parameters = remaining_call

1612
1613
                                finish_reason_type = "tool_calls"

YAMY's avatar
YAMY committed
1614
1615
1616
1617
1618
1619
1620
1621
1622
                            tool_call = ToolCall(
                                id=str(call_item.tool_index),
                                function=FunctionResponse(
                                    name=call_item.name,
                                    arguments=call_item.parameters,
                                ),
                            )
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1623
1624
1625
1626
1627
1628
1629
                                delta=DeltaMessage(tool_calls=[tool_call]),
                                finish_reason=(
                                    None
                                    if request.stream_options
                                    and request.stream_options.include_usage
                                    else finish_reason_type
                                ),  # additional chunk will be return
YAMY's avatar
YAMY committed
1630
1631
1632
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1633
                                created=created,
YAMY's avatar
YAMY committed
1634
1635
1636
1637
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
1638

YAMY's avatar
YAMY committed
1639
1640
1641
1642
1643
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first

                    else:
                        # No tool calls => just treat this as normal text
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
                        if delta or not (
                            request.stream_options
                            and request.stream_options.include_usage
                        ):
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
                                delta=DeltaMessage(content=delta if delta else None),
                                finish_reason=(
                                    None
                                    if request.stream_options
                                    and request.stream_options.include_usage
                                    else finish_reason_type
                                ),
                                matched_stop=(
                                    finish_reason["matched"]
                                    if finish_reason and "matched" in finish_reason
                                    else None
                                ),
                                logprobs=choice_logprobs,
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
                                created=created,
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                if finish_reason_type == "stop" and request.tool_choice != "none":
                    parser = FunctionCallParser(
                        tools=request.tools,
                        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
                    )
                    if parser.has_tool_call(new_stream_buffer):
                        # if the stream ends with empty string after tool calls
                        finish_reason_type = "tool_calls"

1682
                if request.stream_options and request.stream_options.include_usage:
1683
1684
1685
1686
1687
1688
1689
1690
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1691
1692
1693
1694
1695
1696
1697
1698
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
1699
                    usage = UsageInfo(
1700
1701
1702
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1703
                        prompt_tokens_details=prompt_tokens_details,
1704
1705
                    )

1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
                else:
                    usage = None
                final_usage_chunk = ChatCompletionStreamResponse(
                    id=content["meta_info"]["id"],
                    created=created,
                    choices=[
                        ChatCompletionResponseStreamChoice(
                            index=index,
                            delta=DeltaMessage(),
                            finish_reason=finish_reason_type,
                        )
                    ],
                    model=request.model,
                    usage=usage,
                )
                yield f"data: {final_usage_chunk.model_dump_json()}\n\n"
1722
1723
1724
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1725
1726
            yield "data: [DONE]\n\n"

1727
1728
1729
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
1730
            background=tokenizer_manager.create_abort_task(adapted_request),
1731
        )
1732
1733

    # Non-streaming response.
1734
    try:
1735
        ret = await tokenizer_manager.generate_request(
1736
1737
            adapted_request, raw_request
        ).__anext__()
1738
1739
    except ValueError as e:
        return create_error_response(str(e))
1740
1741
1742
    if not isinstance(ret, list):
        ret = [ret]

1743
    response = v1_chat_generate_response(
YAMY's avatar
YAMY committed
1744
1745
        request,
        ret,
1746
        created,
1747
1748
        cache_report=tokenizer_manager.server_args.enable_cache_report,
        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
Xihuai Wang's avatar
Xihuai Wang committed
1749
        reasoning_parser=tokenizer_manager.server_args.reasoning_parser,
1750
    )
1751

1752
1753
1754
    return response


1755
def v1_embedding_request(all_requests, tokenizer_manager):
1756
1757
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1758
    first_prompt_type = type(all_requests[0].input)
1759
1760

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1761
        prompt = request.input
1762
        assert (
1763
            type(prompt) is first_prompt_type
1764
1765
1766
1767
1768
1769
1770
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
1771
1772
1773
1774
1775
1776
        elif isinstance(prompt, list) and isinstance(
            prompt[0], MultimodalEmbeddingInput
        ):
            texts = []
            images = []
            for item in prompt:
uylnap's avatar
uylnap committed
1777
1778
                # TODO simply use padding for text, we should use a better way to handle this
                texts.append(item.text if item.text is not None else "padding")
1779
1780
                images.append(item.image if item.image is not None else None)
            generate_prompts = []
uylnap's avatar
uylnap committed
1781
1782
1783
1784
1785
1786
            if chat_template_name is not None:
                convs = generate_embedding_convs(texts, images, chat_template_name)
                for conv in convs:
                    generate_prompts.append(conv.get_prompt())
            else:
                generate_prompts = texts
1787
1788
1789
1790
            if len(generate_prompts) == 1:
                prompt_kwargs = {"text": generate_prompts[0], "image_data": images[0]}
            else:
                prompt_kwargs = {"text": generate_prompts, "image_data": images}
1791
1792
1793
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
Baoyuan Qi's avatar
Baoyuan Qi committed
1794
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
1795
            prompt_kwargs = {"text": prompts}
1796
1797
1798
1799
1800
1801
1802
        elif isinstance(prompts[0], list) and isinstance(
            prompts[0][0], MultimodalEmbeddingInput
        ):
            # TODO: multiple requests
            raise NotImplementedError(
                "Multiple requests with multimodal inputs are not supported yet"
            )
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1815
1816
1817
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1818
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1819
1820
1821
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1822
1823
1824
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1835
1836


1837
async def v1_embeddings(tokenizer_manager, raw_request: Request):
1838
1839
1840
1841
    try:
        request_json = await raw_request.json()
    except Exception as e:
        return create_error_response("Invalid request body, error: ", str(e))
1842
    all_requests = [EmbeddingRequest(**request_json)]
1843
    adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)
1844
1845

    try:
1846
        ret = await tokenizer_manager.generate_request(
1847
1848
1849
1850
1851
1852
1853
1854
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

1855
    response = v1_embedding_response(ret, tokenizer_manager.model_path)
1856
1857
1858
1859

    return response


1860
def to_openai_style_logprobs(
1861
1862
1863
1864
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1865
1866
1867
1868
1869
1870
1871
1872
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1873
            # Not supported yet
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1885
1886
1887
1888
1889
1890
1891
1892
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1893

Liangsheng Yin's avatar
Liangsheng Yin committed
1894
    return ret_logprobs