"tests/vscode:/vscode.git/clone" did not exist on "968c52dd7bde8325e85fc53fa7f38491f1399656"
Unverified Commit c998d04b authored by Mick's avatar Mick Committed by GitHub
Browse files

vlm: enable radix cache for qwen-vl models (#5349)


Co-authored-by: default avatarXinyuan Tong <justinning0323@outlook.com>
parent 7d0edf3c
......@@ -89,7 +89,7 @@ def set_seed(seed_value):
def prepare_samples(eval_args: EvalArgs):
print("preparing samples...")
print("Preparing samples...")
# Build prompts
set_seed(eval_args.seed)
......@@ -105,15 +105,40 @@ def prepare_samples(eval_args: EvalArgs):
assert len(value) == 1, "key {} has more than one value".format(key)
eval_args.config[key] = value[0]
# run for each subject
# run for each subject in parallel
sub_dataset_list = []
subjects = list(CAT_SHORT2LONG.values()) # Get a fixed list of subjects
for subject in tqdm(CAT_SHORT2LONG.values()):
sub_dataset = load_dataset(
eval_args.dataset_path, subject, split=eval_args.split
)
sub_dataset_list.append(sub_dataset)
# break
print(f"Loading datasets for {len(subjects)} subjects...")
with ThreadPoolExecutor() as executor:
# Submit all load_dataset tasks
future_to_subject = {
executor.submit(
load_dataset, eval_args.dataset_path, subject, split=eval_args.split
): subject
for subject in subjects
}
# Collect results as they complete
results = {}
for future in tqdm(
as_completed(future_to_subject),
total=len(subjects),
desc="Loading datasets",
):
subject = future_to_subject[future]
try:
results[subject] = future.result()
except Exception as exc:
print(f"{subject} generated an exception: {exc}")
# Ensure datasets are added in the original order for consistency
for subject in subjects:
if subject in results:
sub_dataset_list.append(results[subject])
else:
# Handle cases where a dataset failed to load (optional, depends on desired behavior)
print(f"Warning: Dataset for subject '{subject}' could not be loaded.")
# merge all dataset
dataset = concatenate_datasets(sub_dataset_list)
......@@ -133,18 +158,25 @@ def prepare_samples(eval_args: EvalArgs):
width, height = image.size
if width * height >= eval_args.image_pixels_limit:
return None, True
image_path = f"{images_path}/image_{i}.png"
# Use a unique identifier for the image path to avoid potential collisions if indices reset
image_path = f"{images_path}/image_{sample['id']}.png"
if not os.path.exists(image_path):
image.save(image_path)
sample["image_path"] = image_path
return sample, False
print("Processing samples...")
with ThreadPoolExecutor() as executor:
# Pass the sample itself to process_sample, index is less reliable now
futures = [
executor.submit(process_sample, i, sample)
executor.submit(
process_sample, i, sample
) # Keep index i for tqdm maybe? Or remove it. Let's keep it for now.
for i, sample in enumerate(dataset)
]
for future in tqdm(as_completed(futures), total=len(futures)):
for future in tqdm(
as_completed(futures), total=len(dataset), desc="Processing samples"
):
sample, skipped = future.result()
if skipped:
skip_count += 1
......@@ -152,9 +184,9 @@ def prepare_samples(eval_args: EvalArgs):
samples.append(sample)
print(
f"skipping {skip_count} samples with large images, {round((float(skip_count) / len(dataset)) * 100, 2)}% of dataset"
f"Skipping {skip_count} samples with large images, {round((float(skip_count) / len(dataset)) * 100, 2)}% of dataset"
)
print("samples have been prepared")
print("Samples have been prepared")
return samples
......
......@@ -73,15 +73,14 @@ class ModelConfig:
)
if enable_multimodal is None:
if self.hf_config.architectures[0] == "Llama4ForConditionalGeneration":
mm_disabled_models = [
"Gemma3ForConditionalGeneration",
"Llama4ForConditionalGeneration",
]
if self.hf_config.architectures[0] in mm_disabled_models:
enable_multimodal = False
logger.info(
"Multimodal is disabled for Llama4. To enable it, set --enable-llama4-multimodal."
)
elif self.hf_config.architectures[0] == "Gemma3ForConditionalGeneration":
enable_multimodal = False
logger.info(
"Multimodal is disabled for Gemma3. To enable it, set --enable-gemma3-multimodal."
f"Multimodal is disabled for {self.hf_config.model_type}. To enable it, set --enable-multimodal."
)
else:
enable_multimodal = True
......
......@@ -877,127 +877,163 @@ class MRotaryEmbedding(RotaryEmbedding):
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
return query, key
# Copied from https://github.com/huggingface/transformers/blob/c8e0e603de9b3d49161a15fe6e8ea84badfb5d02/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py#L1439
@staticmethod
def get_input_positions(
input_tokens: List[int],
image_grid_thw: Union[List[List[int]], torch.Tensor],
video_grid_thw: Union[List[List[int]], torch.Tensor],
def get_rope_index(
spatial_merge_size: int,
image_token_id: int,
video_token_id: int,
vision_start_token_id: int,
vision_end_token_id: int,
spatial_merge_size: int,
context_len: int = 0,
seq_len: Optional[int] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
model_type: str,
tokens_per_second: Optional[int] = None,
) -> Tuple[List[List[int]], int]:
"""
Get mrope input positions and delta value.
:arg
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
"""
if isinstance(image_grid_thw, torch.Tensor):
image_grid_thw = image_grid_thw.tolist()
if isinstance(video_grid_thw, torch.Tensor):
video_grid_thw = video_grid_thw.tolist()
input_tokens_tensor = torch.tensor(input_tokens)
vision_start_indices = torch.argwhere(
input_tokens_tensor == vision_start_token_id
).squeeze(1)
vision_tokens = input_tokens_tensor[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
image_index, video_index = 0, 0
for _ in range(image_nums + video_nums):
if image_token_id in input_tokens and remain_images > 0:
ed_image = input_tokens.index(image_token_id, st)
else:
ed_image = len(input_tokens) + 1
if video_token_id in input_tokens and remain_videos > 0:
ed_video = input_tokens.index(video_token_id, st)
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
image_index += 1
remain_images -= 1
second_per_grid_t = 0
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
if second_per_grid_ts is not None:
second_per_grid_t = second_per_grid_ts[video_index]
else:
second_per_grid_t = 1.0
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = (
t,
h // spatial_merge_size,
w // spatial_merge_size,
)
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
)
t_index = (
torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w)
* second_per_grid_t
* tokens_per_second
).flatten()
h_index = (
torch.arange(llm_grid_h)
.view(1, -1, 1)
.expand(llm_grid_t, -1, llm_grid_w)
.flatten()
)
w_index = (
torch.arange(llm_grid_w)
.view(1, 1, -1)
.expand(llm_grid_t, llm_grid_h, -1)
.flatten()
)
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]) + text_len + st_idx
input_ids: Optional[torch.LongTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
mrope_position_deltas = []
if input_ids is not None and (
image_grid_thw is not None or video_grid_thw is not None
):
total_input_ids = input_ids
position_ids = torch.ones(
3,
input_ids.shape[0],
input_ids.shape[1],
dtype=input_ids.dtype,
device=input_ids.device,
)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
image_index, video_index = 0, 0
for i, input_ids in enumerate(total_input_ids):
image_nums, video_nums = 0, 0
vision_start_indices = torch.argwhere(
input_ids == vision_start_token_id
).squeeze(1)
vision_tokens = input_ids[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
input_tokens = input_ids.tolist()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
for _ in range(image_nums + video_nums):
if image_token_id in input_tokens and remain_images > 0:
ed_image = input_tokens.index(image_token_id, st)
else:
ed_image = len(input_tokens) + 1
if video_token_id in input_tokens and remain_videos > 0:
ed_video = input_tokens.index(video_token_id, st)
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
second_per_grid_t = 0
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
if second_per_grid_ts is not None:
second_per_grid_t = second_per_grid_ts[video_index]
else:
second_per_grid_t = 1.0
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = (
t.item(),
h.item() // spatial_merge_size,
w.item() // spatial_merge_size,
)
text_len = ed - st
st_idx = (
llm_pos_ids_list[-1].max() + 1
if len(llm_pos_ids_list) > 0
else 0
)
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
)
if model_type == "qwen2_5_vl":
range_tensor = torch.arange(llm_grid_t).view(-1, 1)
expanded_range = range_tensor.expand(
-1, llm_grid_h * llm_grid_w
)
time_tensor = (
expanded_range * second_per_grid_t * tokens_per_second
)
time_tensor_long = time_tensor.long()
t_index = time_tensor_long.flatten()
elif model_type == "qwen2_vl":
t_index = (
torch.arange(llm_grid_t)
.view(-1, 1)
.expand(-1, llm_grid_h * llm_grid_w)
.flatten()
)
else:
raise RuntimeError("Unimplemented")
h_index = (
torch.arange(llm_grid_h)
.view(1, -1, 1)
.expand(llm_grid_t, -1, llm_grid_w)
.flatten()
)
w_index = (
torch.arange(llm_grid_w)
.view(1, 1, -1)
.expand(llm_grid_t, llm_grid_h, -1)
.flatten()
)
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]) + text_len + st_idx
)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = (
llm_pos_ids_list[-1].max() + 1
if len(llm_pos_ids_list) > 0
else 0
)
text_len = len(input_tokens) - st
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
position_ids[..., i, :] = llm_positions.to(position_ids.device)
mrope_position_deltas.append(
llm_positions.max() + 1 - len(total_input_ids[i])
)
mrope_position_deltas = torch.tensor(
mrope_position_deltas, device=input_ids.device
).unsqueeze(1)
return position_ids, mrope_position_deltas
else:
s = input_ids.shape[1]
position_ids = torch.arange(s)
position_ids = (
position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device)
)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
mrope_position_delta = (llm_positions.max() + 1 - len(input_tokens)).item()
llm_positions = llm_positions[:, context_len:seq_len]
return llm_positions.tolist(), mrope_position_delta
max_position_ids = position_ids.max(0, keepdim=False)[0].max(
-1, keepdim=True
)[0]
mrope_position_deltas = max_position_ids + 1 - s
return position_ids, mrope_position_deltas
@staticmethod
def get_next_input_positions(
......
......@@ -463,6 +463,8 @@ class EmbeddingReqInput:
image_data: Optional[
Union[List[List[Union[Image, str]]], List[Union[Image, str]], Union[Image, str]]
] = None
# The audio input. Like image data, it can be a file name, a url, or base64 encoded string.
audio_data: Optional[Union[List[str], str]] = None
# The token ids for text; one can either specify text or input_ids.
input_ids: Optional[Union[List[List[int]], List[int]]] = None
# The request id.
......
......@@ -10,12 +10,13 @@ import torch
from torch import nn
from sglang.srt.managers.schedule_batch import (
Modality,
MultimodalDataItem,
MultimodalInputs,
global_server_args_dict,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.utils import print_warning_once
from sglang.srt.utils import flatten_nested_list, print_warning_once
logger = logging.getLogger(__name__)
......@@ -97,31 +98,80 @@ class MultiModalityDataPaddingPatternTokenPairs(MultiModalityDataPaddingPattern)
return padded_ids
class MultiModalityDataPaddingPatternImageTokens(MultiModalityDataPaddingPattern):
class MultiModalityDataPaddingPatternMultimodalTokens(MultiModalityDataPaddingPattern):
"""In this pattern, data tokens should be represented as repetitions of a single token
e.g. <image><image>....<image>, or <audio><audio>...<audio>
"""
def __init__(self, image_token_id: torch.Tensor) -> None:
self.image_token_id = image_token_id
def __init__(self, token_ids: List[int]) -> None:
self.token_ids = token_ids
def pad_input_tokens(self, input_ids: List[int], mm_inputs) -> List[int]:
def pad_input_tokens(
self, input_ids: List[int], mm_inputs: MultimodalInputs
) -> List[int]:
"""
This function will replace the data-tokens in between with pad_values accordingly
Finds contiguous regions of tokens matching `self.token_ids` in `input_ids`
and replaces each region with the corresponding `pad_value` from `mm_inputs.mm_items`.
"""
pad_values = [item.pad_value for item in mm_inputs.mm_items]
assert len(pad_values) != 0
if not pad_values:
# No multimodal items, return original input_ids
return input_ids
if not input_ids:
return []
input_ids_tensor = torch.tensor(input_ids)
mask = torch.isin(input_ids_tensor, self.image_token_id)
device = input_ids_tensor.device
token_ids_tensor = torch.tensor(self.token_ids, device=device)
mask = torch.isin(input_ids_tensor, token_ids_tensor)
num_image_tokens = mask.sum().item()
repeated_pad_values = torch.tensor(pad_values).repeat(
num_image_tokens // len(pad_values) + 1
)[:num_image_tokens]
if not mask.any():
# No tokens match token_ids, return original input_ids
return input_ids
# Find contiguous regions
padded_mask = torch.cat(
(
torch.tensor([False], device=device),
mask,
torch.tensor([False], device=device),
)
)
# Find indices where the mask value changes
diff_indices = torch.where(padded_mask[1:] != padded_mask[:-1])[0]
# Start indices are where False changes to True
starts = diff_indices[::2]
# End indices are where True changes to False (exclusive index)
ends = diff_indices[1::2]
# Check if the number of regions matches the number of pad values
if len(starts) != len(pad_values):
# Maybe log a warning here?
num_regions = len(starts)
num_pad_values = len(pad_values)
if num_regions > 0 and num_pad_values > 0:
pad_values = (pad_values * (num_regions // num_pad_values + 1))[
:num_regions
]
else: # If no regions or no pad_values, this loop won't run anyway.
pad_values = [] # Ensure pad_values is empty if starts is empty
# Create a copy to modify
output_ids_tensor = input_ids_tensor.clone()
# Replace tokens in each region with the corresponding pad value
# Ensure we don't iterate if pad_values became empty due to mismatch and num_regions=0
for i in range(min(len(starts), len(pad_values))):
start_idx = starts[i]
end_idx = ends[i]
pad_value = pad_values[i]
if pad_value is not None: # Ensure pad_value is not None before assignment
output_ids_tensor[start_idx:end_idx] = pad_value
else:
logger.warning(f"Skipping region {i} due to None pad_value.")
input_ids_tensor[mask] = repeated_pad_values
return input_ids_tensor.tolist()
return output_ids_tensor.tolist()
def get_embedding_and_mask(
......@@ -150,7 +200,6 @@ def get_embedding_and_mask(
).unsqueeze(-1)
num_mm_tokens_in_input_ids = special_multimodal_mask.sum().item()
if num_mm_tokens_in_input_ids != num_mm_tokens_in_embedding:
logger.warning(
f"Number of tokens in multimodal embedding does not match those in the input text."
......@@ -190,13 +239,13 @@ def embed_mm_inputs(
audio_data_embedding_func: Callable[
[List[MultimodalDataItem]], torch.Tensor
] = None,
placeholder_token_ids: List[int] = None,
placeholder_tokens: dict[Modality, List[int]] = None,
) -> Optional[torch.Tensor]:
"""
Calculate the multimodal embeddings if necessary, then scatter the result with the help of a boolean mask denoting the embed locations
Args:
placeholder_token_ids: denoting the token of multimodal data in input_ids.
placeholder_tokens: denoting the token of multimodal data in input_ids.
If none, the pad_values of multimodal items are used
Returns:
......@@ -208,9 +257,17 @@ def embed_mm_inputs(
# 1. Calculate the multimodal data which exists in input_ids, with the help of pad_values
# we assume that multimodal data are represented with its pad_values in input_ids
placeholder_token_ids = placeholder_token_ids or [
item.pad_value for item in mm_inputs.mm_items
]
# See `pad_input_ids` for more detail
# if placeholder_tokens is specified
if placeholder_tokens is not None:
placeholder_token_ids = flatten_nested_list(
[placeholder_token for placeholder_token in placeholder_tokens.values()]
)
else:
placeholder_token_ids = [item.pad_value for item in mm_inputs.mm_items]
assert isinstance(placeholder_token_ids[0], int)
placeholder_tensor = torch.tensor(placeholder_token_ids, device=input_ids.device)
......@@ -233,7 +290,7 @@ def embed_mm_inputs(
using_all_items = False
if len(appearing_items) == 0:
# This happens mostly when arg placeholder_token_ids is passed
logger.warning_once(
logger.warning(
"No multimodal data item's pad value exist in placeholder ids. Using all items"
)
using_all_items = True
......@@ -253,7 +310,8 @@ def embed_mm_inputs(
data_embedding_func=image_data_embedding_func,
embedding_items=items,
placeholder_tensor=(
placeholder_tensor
# use the specified modality token to identify the location to embed
placeholder_tokens[Modality.IMAGE]
if using_all_items
else torch.tensor(
[item.pad_value for item in items],
......@@ -275,7 +333,7 @@ def embed_mm_inputs(
data_embedding_func=audio_data_embedding_func,
embedding_items=items,
placeholder_tensor=(
placeholder_tensor
placeholder_tokens[Modality.AUDIO]
if using_all_items
else torch.tensor(
[item.pad_value for item in items],
......@@ -296,7 +354,7 @@ def embed_mm_inputs(
input_ids.clamp_(min=0, max=vocab_size - 1)
inputs_embeds = input_embedding(input_ids)
# 4. scatter embeddings into input embedding
# 4. Scatter embeddings into input embedding
for embedding, mask in zip(embeddings, masks):
mask = mask.expand_as(inputs_embeds).to(inputs_embeds.device)
inputs_embeds = inputs_embeds.masked_scatter(
......@@ -316,7 +374,7 @@ def general_mm_embed_routine(
audio_data_embedding_func: Callable[
[List[MultimodalDataItem]], torch.Tensor
] = None,
placeholder_token_ids: List[int] = None,
placeholder_tokens: dict[Modality, List[int]] = None,
**kwargs,
) -> torch.Tensor:
"""
......@@ -328,7 +386,6 @@ def general_mm_embed_routine(
audio_data_embedding_func : the function returning the image embedding
Returns:
inputs_embedding
forwarded hidden states
"""
......@@ -346,9 +403,9 @@ def general_mm_embed_routine(
input_embedding=embed_tokens,
image_data_embedding_func=image_data_embedding_func,
audio_data_embedding_func=audio_data_embedding_func,
placeholder_token_ids=placeholder_token_ids,
placeholder_tokens=placeholder_tokens,
)
# once used, mm_inputs is useless
# once used, mm_inputs is useless, considering chunked-prefill is disabled for multimodal models
# just being defensive here
forward_batch.mm_inputs = None
else:
......
......@@ -8,6 +8,7 @@ from typing import List, Optional
import numpy as np
import PIL
from PIL import Image
from transformers import BaseImageProcessorFast
from sglang.srt.managers.schedule_batch import Modality
......@@ -92,7 +93,12 @@ class BaseMultimodalProcessor(ABC):
@abstractmethod
async def process_mm_data_async(
self, image_data, input_text, max_req_input_len, **kwargs
self,
image_data,
input_text,
request_obj,
max_req_input_len,
**kwargs,
):
pass
......@@ -104,6 +110,8 @@ class BaseMultimodalProcessor(ABC):
from decord import VideoReader, cpu
# Before processing inputs
if not image_data or len(image_data) == 0:
return []
estimated_frames_list = []
for image in image_data:
if isinstance(image, str) and image.startswith("video:"):
......@@ -215,6 +223,9 @@ class BaseMultimodalProcessor(ABC):
discard_alpha_channel: if True, discards the alpha channel in the returned images
"""
if image_data is None:
image_data = []
if isinstance(multimodal_tokens.image_token, int):
multimodal_tokens.image_token = (
self._processor.tokenizer.convert_ids_to_tokens(
......@@ -229,6 +240,8 @@ class BaseMultimodalProcessor(ABC):
prompt = self._processor.tokenizer.decode(prompt)
else:
prompt = prompt
assert isinstance(prompt, str)
if return_text:
import re
......
......@@ -16,6 +16,7 @@
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from typing import List, Union
import torch
......@@ -35,7 +36,13 @@ class DeepseekVL2ImageProcessor(BaseMultimodalProcessor):
self.IMAGE_TOKEN = "<image>"
async def process_mm_data_async(
self, image_data, input_ids, request_obj, max_req_input_len, *args, **kwargs
self,
image_data: List[Union[str, bytes]],
input_text,
request_obj,
max_req_input_len,
*args,
**kwargs
):
if not image_data:
return None
......@@ -45,7 +52,7 @@ class DeepseekVL2ImageProcessor(BaseMultimodalProcessor):
image_token = self.IMAGE_TOKEN
base_output = self.load_mm_data(
input_ids,
input_text,
image_data=image_data,
multimodal_tokens=MultimodalSpecialTokens(image_token=image_token),
max_req_input_len=max_req_input_len,
......
from typing import List, Union
from transformers.utils import logging
from sglang.srt.managers.multimodal_processor import (
BaseMultimodalProcessor as SGLangBaseProcessor,
)
......@@ -13,7 +11,6 @@ from sglang.srt.models.gemma3_mm import Gemma3ForConditionalGeneration
# Copied from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gemma3/image_processing_gemma3_fast.py
# will be removed in the future
logger = logging.get_logger(__name__)
class Gemma3SGLangImageProcessor(SGLangBaseProcessor):
......@@ -28,7 +25,7 @@ class Gemma3SGLangImageProcessor(SGLangBaseProcessor):
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
input_ids,
input_text,
request_obj,
max_req_input_len,
*args,
......@@ -41,7 +38,7 @@ class Gemma3SGLangImageProcessor(SGLangBaseProcessor):
image_token = self.IMAGE_TOKEN
base_output = self.load_mm_data(
prompt=input_ids,
prompt=input_text,
image_data=image_data,
multimodal_tokens=MultimodalSpecialTokens(image_token=image_token),
max_req_input_len=max_req_input_len,
......
......@@ -17,7 +17,7 @@ class JanusProImageProcessor(BaseMultimodalProcessor):
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
input_ids,
input_text,
request_obj,
max_req_input_len,
**kwargs,
......@@ -31,7 +31,7 @@ class JanusProImageProcessor(BaseMultimodalProcessor):
processor = self._processor
base_out = self.load_mm_data(
prompt=input_ids,
prompt=input_text,
image_data=image_data,
multimodal_tokens=MultimodalSpecialTokens(
image_token=processor.image_token
......
......@@ -51,9 +51,10 @@ class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
input_ids,
input_text,
request_obj,
max_req_input_len,
**kwargs,
):
audio_data = request_obj.audio_data
if not image_data and not audio_data:
......@@ -64,7 +65,7 @@ class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
audio_data = [audio_data]
base_output = self.load_mm_data(
prompt=input_ids,
prompt=input_text,
max_req_input_len=max_req_input_len,
audio_data=audio_data,
image_data=image_data,
......
......@@ -5,6 +5,7 @@ from typing import List, Union
import torch
from PIL import Image
from sglang.srt.layers.rotary_embedding import MRotaryEmbedding
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor as SGLangBaseProcessor,
)
......@@ -27,6 +28,8 @@ class Qwen2_5VLImageProcessor(SGLangBaseProcessor):
self.IM_END_TOKEN_ID = hf_config.vision_end_token_id
self.image_token_id = hf_config.image_token_id
self.video_token_id = hf_config.video_token_id
self.vision_start_token_id = hf_config.vision_start_token_id
self.vision_end_token_id = hf_config.vision_end_token_id
self.NUM_TOKEN_PER_FRAME = 770
self.IMAGE_FACTOR = 28
self.MIN_PIXELS = 4 * 28 * 28
......@@ -36,20 +39,18 @@ class Qwen2_5VLImageProcessor(SGLangBaseProcessor):
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
prompt,
input_text,
request_obj,
max_req_input_len,
*args,
**kwargs,
):
if not image_data:
return None
if isinstance(image_data, str):
image_data = [image_data]
image_token = self.IMAGE_TOKEN
base_output = self.load_mm_data(
prompt=prompt,
prompt=input_text,
image_data=image_data,
multimodal_tokens=MultimodalSpecialTokens(image_token=image_token),
max_req_input_len=max_req_input_len,
......@@ -116,29 +117,53 @@ class Qwen2_5VLImageProcessor(SGLangBaseProcessor):
async def resize_image_async(image):
return resize_image(image)
resize_tasks = [resize_image_async(image) for image in base_output.images]
resized_images = await asyncio.gather(*resize_tasks)
if base_output.images:
resize_tasks = [resize_image_async(image) for image in base_output.images]
base_output.images = await asyncio.gather(*resize_tasks)
ret = self.process_mm_data(
input_text=base_output.input_text,
images=resized_images,
images=base_output.images,
)
image_grid_thws = torch.concat([ret["image_grid_thw"]])
return {
"input_ids": ret["input_ids"].flatten().tolist(),
"mm_items": [
items = []
input_ids = ret["input_ids"].flatten().tolist()
if "pixel_values" in ret:
items += [
MultimodalDataItem(
pixel_values=ret["pixel_values"],
image_grid_thws=image_grid_thws,
image_grid_thws=torch.concat([ret["image_grid_thw"]]),
# TODO
video_grid_thws=None,
second_per_grid_ts=ret.get("second_per_grid_ts", None),
modality=Modality.IMAGE,
)
],
]
mrope_positions, mrope_position_delta = MRotaryEmbedding.get_rope_index(
spatial_merge_size=self.hf_config.vision_config.spatial_merge_size,
image_token_id=self.image_token_id,
video_token_id=self.video_token_id,
vision_start_token_id=self.vision_start_token_id,
model_type=self.hf_config.model_type,
tokens_per_second=getattr(
self.hf_config.vision_config, "tokens_per_second", None
),
input_ids=torch.tensor(input_ids).unsqueeze(0),
image_grid_thw=ret.get("image_grid_thw", None),
video_grid_thw=ret.get("video_grid_thw", None),
second_per_grid_ts=ret.get("second_per_grid_ts", None),
)
mrope_positions = mrope_positions.squeeze(1)
return {
"input_ids": input_ids,
"mm_items": items,
"im_start_id": self.IM_START_TOKEN_ID,
"im_end_id": self.IM_END_TOKEN_ID,
"im_token_id": self.image_token_id,
"video_token_id": self.video_token_id,
"mrope_positions": mrope_positions,
"mrope_position_delta": mrope_position_delta,
}
......@@ -285,6 +285,7 @@ class MultimodalInputs:
num_image_tokens: Optional[int] = None
# QWen2-VL related
mrope_positions: Optional[torch.Tensor] = None
mrope_position_delta: Optional[torch.Tensor] = None
# image
......@@ -310,16 +311,12 @@ class MultimodalInputs:
assert isinstance(ret.mm_items, list)
ret.mm_items = [item for item in ret.mm_items if item.is_valid()]
assert len(ret.mm_items) != 0
# Use image hash as fake token_ids. We use this as the key for prefix matching in the radix cache.
# Please note that if the `input_ids` is later used in the model forward,
# you also need to clamp the values within the range of [0, vocab_size) to avoid out-of-bound
# errors in cuda kernels. See also llava.py for example.
for item in ret.mm_items:
item.set_pad_value()
optional_args = [
"mrope_positions",
"mrope_position_delta",
"im_token_id",
"im_start_id",
"im_end_id",
......@@ -350,20 +347,26 @@ class MultimodalInputs:
merge image inputs when requests are being merged
"""
# Use image hash as fake token_ids. We use this as the key for prefix matching in the radix cache.
# Please note that if the `input_ids` is later used in the model forward,
# you also need to clamp the values within the range of [0, vocab_size) to avoid out-of-bound
# errors in cuda kernels. See also llava.py for example.
# args needed to be merged
optional_args = [
"mm_items",
"image_pad_len",
"mrope_position_delta",
]
for arg in optional_args:
self_arg = getattr(self, arg, None)
if self_arg is not None:
setattr(self, arg, self_arg + getattr(other, arg))
mrope_positions = self.mrope_positions
if mrope_positions is not None:
if other.mrope_positions is None:
self.mrope_positions = mrope_positions
else:
self.mrope_positions = torch.cat(
[self.mrope_positions, other.mrope_positions], dim=1
)
# other args would be kept intact
......
......@@ -419,7 +419,10 @@ class TokenizerManager:
input_ids = self.tokenizer.encode(input_text)
image_inputs: Dict = await self.mm_processor.process_mm_data_async(
obj.image_data, input_text or input_ids, obj, self.max_req_input_len
image_data=obj.image_data,
input_text=input_text or input_ids,
request_obj=obj,
max_req_input_len=self.max_req_input_len,
)
if image_inputs and "input_ids" in image_inputs:
input_ids = image_inputs["input_ids"]
......
......@@ -407,8 +407,6 @@ class ForwardBatch:
def _compute_mrope_positions(
self, model_runner: ModelRunner, batch: ModelWorkerBatch
):
device = model_runner.device
hf_config = model_runner.model_config.hf_config
mrope_positions_list = [None] * self.seq_lens.shape[0]
if self.forward_mode.is_decode():
for i, _ in enumerate(mrope_positions_list):
......@@ -417,93 +415,44 @@ class ForwardBatch:
if batch.multimodal_inputs[i] is None
else batch.multimodal_inputs[i].mrope_position_delta
)
mrope_positions_list[i] = MRotaryEmbedding.get_next_input_positions(
mrope_position_delta,
int(self.seq_lens[i]) - 1,
int(self.seq_lens[i]),
mrope_positions_list[i] = torch.tensor(
MRotaryEmbedding.get_next_input_positions(
mrope_position_delta,
int(self.seq_lens[i]) - 1,
int(self.seq_lens[i]),
)
)
elif self.forward_mode.is_extend():
extend_start_loc_cpu = self.extend_start_loc.cpu().numpy()
for i, mm_input in enumerate(batch.multimodal_inputs):
extend_start_loc, extend_seq_len, extend_prefix_len = (
extend_start_loc_cpu[i],
extend_seq_len, extend_prefix_len = (
batch.extend_seq_lens[i],
batch.extend_prefix_lens[i],
)
if mm_input is None:
# text only
mrope_positions = [
mrope_positions = torch.tensor(
[
pos
for pos in range(
extend_prefix_len, extend_prefix_len + extend_seq_len
)
[
pos
for pos in range(
extend_prefix_len,
extend_prefix_len + extend_seq_len,
)
]
]
] * 3
else:
image_grid_thws_list = [
item.image_grid_thws
for item in mm_input.mm_items
if item.image_grid_thws is not None
]
image_grid_thw = (
None
if len(image_grid_thws_list) == 0
else torch.cat(image_grid_thws_list, dim=0)
)
video_grid_thws_list = [
item.video_grid_thws
for item in mm_input.mm_items
if item.video_grid_thws is not None
]
video_grid_thw = (
None
if len(video_grid_thws_list) == 0
else torch.cat(video_grid_thws_list, dim=0)
* 3
)
second_per_grid_ts_list = [
item.second_per_grid_ts
for item in mm_input.mm_items
if item.second_per_grid_ts is not None
else:
mrope_positions = mm_input.mrope_positions[
:,
extend_prefix_len : extend_prefix_len + extend_seq_len,
]
second_per_grid_ts = (
None
if len(second_per_grid_ts_list) == 0
else torch.cat(second_per_grid_ts_list, dim=0)
)
# TODO: current qwen2-vl do not support radix cache since mrope position calculation
mrope_positions, mrope_position_delta = (
MRotaryEmbedding.get_input_positions(
input_tokens=self.input_ids[
extend_start_loc : extend_start_loc + extend_seq_len
].tolist(),
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
image_token_id=hf_config.image_token_id,
video_token_id=hf_config.video_token_id,
vision_start_token_id=hf_config.vision_start_token_id,
vision_end_token_id=hf_config.vision_end_token_id,
spatial_merge_size=hf_config.vision_config.spatial_merge_size,
context_len=0,
seq_len=len(self.input_ids),
second_per_grid_ts=second_per_grid_ts,
tokens_per_second=getattr(
hf_config.vision_config, "tokens_per_second", None
),
)
)
batch.multimodal_inputs[i].mrope_position_delta = (
mrope_position_delta
)
mrope_positions_list[i] = mrope_positions
self.mrope_positions = torch.cat(
[torch.tensor(pos, device=device) for pos in mrope_positions_list],
axis=1,
)
[pos.to(device=model_runner.device) for pos in mrope_positions_list],
dim=1,
).to(device=model_runner.device)
self.mrope_positions = self.mrope_positions.to(torch.int64)
def get_max_chunk_capacity(self):
......
......@@ -310,15 +310,6 @@ class ModelRunner:
)
server_args.chunked_prefill_size = -1
if self.model_config.hf_config.architectures == [
"Qwen2VLForConditionalGeneration"
] or self.model_config.hf_config.architectures == [
"Qwen2_5_VLForConditionalGeneration"
]:
# TODO: qwen2-vl series does not support radix cache now, set disable_radix_cache=True automatically
logger.info("Automatically disable radix cache for qwen-vl series.")
server_args.disable_radix_cache = True
if server_args.enable_deepep_moe:
logger.info(f"DeepEP is turned on. DeepEP mode: {server_args.deepep_mode}")
......
......@@ -12,7 +12,7 @@ from sglang.srt.configs.deepseekvl2 import (
from sglang.srt.layers.linear import ReplicatedLinear
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternImageTokens,
MultiModalityDataPaddingPatternMultimodalTokens,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInputs
......@@ -249,8 +249,8 @@ class DeepseekVL2ForCausalLM(nn.Module):
weights_loader(param, loaded_weight)
def pad_input_ids(self, input_ids: List[int], image_inputs: MultimodalInputs):
helper = MultiModalityDataPaddingPatternImageTokens(
image_token_id=image_inputs.im_token_id
helper = MultiModalityDataPaddingPatternMultimodalTokens(
[image_inputs.im_token_id]
)
return helper.pad_input_tokens(input_ids, image_inputs)
......
......@@ -43,6 +43,7 @@ from sglang.srt.managers.mm_utils import (
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import (
Modality,
MultimodalDataItem,
MultimodalInputs,
flatten_nested_list,
......@@ -1834,7 +1835,10 @@ class MiniCPMO(MiniCPMBaseModel):
language_model=self.llm,
image_data_embedding_func=self.get_image_feature,
audio_data_embedding_func=self.get_audio_feature,
placeholder_token_ids=placeholder_token_ids,
placeholder_tokens={
Modality.IMAGE: placeholder_token_ids,
Modality.AUDIO: placeholder_token_ids,
},
positions=positions,
)
return hidden_states
......
......@@ -10,7 +10,7 @@ from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
from sglang.srt.layers.quantization import QuantizationConfig
from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternImageTokens,
MultiModalityDataPaddingPatternMultimodalTokens,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInputs
......@@ -53,7 +53,7 @@ class Llama4ForConditionalGeneration(nn.Module):
# Get all special token IDs
im_token_id: int = mm_inputs.im_token_id
pattern = MultiModalityDataPaddingPatternImageTokens(torch.tensor(im_token_id))
pattern = MultiModalityDataPaddingPatternMultimodalTokens([im_token_id])
return pattern.pad_input_tokens(input_ids, mm_inputs)
def get_image_feature(
......
......@@ -49,7 +49,7 @@ from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternTokenPairs,
MultiModalityDataPaddingPatternMultimodalTokens,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInputs
......@@ -488,11 +488,8 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module):
def pad_input_ids(self, input_ids: List[int], mm_inputs: MultimodalInputs):
# Get all special token IDs
im_start_id: int = mm_inputs.im_start_id
im_end_id: int = mm_inputs.im_end_id
media_token_pairs = [(im_start_id, im_end_id)]
pattern = MultiModalityDataPaddingPatternTokenPairs(media_token_pairs)
im_token_id: int = mm_inputs.im_token_id
pattern = MultiModalityDataPaddingPatternMultimodalTokens([im_token_id])
return pattern.pad_input_tokens(input_ids, mm_inputs)
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
......
......@@ -42,7 +42,7 @@ from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternTokenPairs,
MultiModalityDataPaddingPatternMultimodalTokens,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInputs
......@@ -490,15 +490,11 @@ class Qwen2VLForConditionalGeneration(nn.Module):
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
# Use grid_t * grid_w * grid_h to pad tokens for each image
# add replaced padding by unique image hash
def pad_input_ids(self, input_ids: List[int], mm_inputs: MultimodalInputs):
# Get all special token IDs
im_start_id: int = mm_inputs.im_start_id
im_end_id: int = mm_inputs.im_end_id
im_token_id: int = mm_inputs.im_token_id
media_token_pairs = [(im_start_id, im_end_id)]
pattern = MultiModalityDataPaddingPatternTokenPairs(media_token_pairs)
pattern = MultiModalityDataPaddingPatternMultimodalTokens([im_token_id])
return pattern.pad_input_tokens(input_ids, mm_inputs)
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment