adapter.py 68.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
15

16
import asyncio
17
import json
18
import logging
19
import os
20
21
import time
import uuid
22
from http import HTTPStatus
23
from typing import Dict, List
24

25
from fastapi import HTTPException, Request, UploadFile
26
from fastapi.responses import ORJSONResponse, StreamingResponse
27
from pydantic import ValidationError
28

29
30
31
32
from sglang.srt.code_completion_parser import (
    generate_completion_prompt_from_request,
    is_completion_template_defined,
)
33
34
35
36
37
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
38
    generate_embedding_convs,
39
40
    register_conv_template,
)
YAMY's avatar
YAMY committed
41
from sglang.srt.function_call_parser import TOOLS_TAG_LIST, FunctionCallParser
Ying Sheng's avatar
Ying Sheng committed
42
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
43
from sglang.srt.openai_api.protocol import (
44
45
    BatchRequest,
    BatchResponse,
46
47
48
49
50
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
51
    ChatCompletionTokenLogprob,
52
    ChatMessage,
53
    ChoiceLogprobs,
54
55
56
57
58
59
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
60
    EmbeddingObject,
61
62
    EmbeddingRequest,
    EmbeddingResponse,
63
    ErrorResponse,
64
    FileDeleteResponse,
65
66
    FileRequest,
    FileResponse,
Tanjiro's avatar
Tanjiro committed
67
    FunctionResponse,
68
    LogProbs,
69
    MultimodalEmbeddingInput,
Tanjiro's avatar
Tanjiro committed
70
    ToolCall,
71
    TopLogprob,
72
73
    UsageInfo,
)
Xihuai Wang's avatar
Xihuai Wang committed
74
from sglang.srt.reasoning_parser import ReasoningParser
75
from sglang.utils import convert_json_schema_to_str, get_exception_traceback
76

77
78
logger = logging.getLogger(__name__)

79
80
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
81

82
83
84
85
86
87
88
89
90
91
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
92
# map file id to file path in SGLang backend
93
94
95
96
97
98
file_id_storage: Dict[str, str] = {}

# backend storage directory
storage_dir = None


99
100
101
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
102
103
104
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
105
    return ORJSONResponse(content=error.model_dump(), status_code=error.code)
106
107
108
109
110


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
111
112
113
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
114
115
116
117
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


118
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg, model_path):
119
120
    global chat_template_name

121
122
123
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
124

125
126
127
128
129
130
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
131
132
133
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
134
135
136
            tokenizer_manager.tokenizer.chat_template = chat_template.replace(
                "\\n", "\n"
            )
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
163
164
165
    else:
        chat_template_name = chat_template_arg

166
167
168
169
    # Check chat-template
    # TODO:
    # 1. Do not import any code from sglang.lang
    # 2. For VLM, when chat_template_arg is None, set it automatically by guessing from model_path.
170

171

172
173
174
async def v1_files_create(
    file: UploadFile, purpose: str, file_storage_path: str = None
):
175
176
    try:
        global storage_dir
177
178
        if file_storage_path:
            storage_dir = file_storage_path
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


213
214
215
216
217
218
219
220
221
222
223
224
225
226
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


227
async def v1_batches(tokenizer_manager, raw_request: Request):
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
248
        asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))
249
250
251
252
253
254
255
256
257
258

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


259
async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
283
        request_ids = []
284
        for line_id, line in enumerate(lines):
285
286
287
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
288
            request_ids.append(f"{batch_id}-req_{line_id}")
289
290
291
292
293
294

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

295
296
297
298
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
299

300
301
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
302
                all_requests, tokenizer_manager, request_ids=request_ids
303
304
            )
        elif end_point == "/v1/completions":
305
306
307
308
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

309
        try:
310
            created = int(time.time())
311
            ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
312
313
314
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
315
316
317
                responses = v1_chat_generate_response(
                    request,
                    ret,
318
                    created,
319
                    to_file=True,
320
321
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
                    tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
322
                )
323
            else:
yichuan~'s avatar
yichuan~ committed
324
                responses = v1_generate_response(
325
326
327
328
329
330
                    request,
                    ret,
                    tokenizer_manager,
                    created,
                    to_file=True,
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
yichuan~'s avatar
yichuan~ committed
331
                )
332
333

        except Exception as e:
334
335
            logger.error(f"error: {get_exception_traceback()}")
            responses = []
336
337
338
339
340
341
342
343
344
345
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
346
            # the batch_req here can be changed to be named within a batch granularity
347
348
349
350
351
352
353
354
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
355

356
357
358
359
360
361
362
363
364
365
366
367
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
368
369
370
371
372
373
374
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
375
376
377
378
379
380
381
382
383
384
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
385
        logger.error(f"error: {e}")
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


402
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
403
404
405
406
407
408
409
410
411
412
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
413
                tokenizer_manager=tokenizer_manager,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


430
async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        # Cancel requests by request_ids
446
447
        for line_id in range(len(lines)):
            rid = f"{batch_id}-req_{line_id}"
448
            tokenizer_manager.abort_request(rid=rid)
449
450
451
452
453
454
455
456
457
458
459
460
461

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


482
483
484
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
485
486
487
488
489
490
491
492
493
494
495
    if len(all_requests) > 1:
        first_prompt_type = type(all_requests[0].prompt)
        for request in all_requests:
            assert (
                type(request.prompt) is first_prompt_type
            ), "All prompts must be of the same type in file input settings"
            if request.n > 1:
                raise ValueError(
                    "Parallel sampling is not supported for completions from files"
                )

496
497
    prompts = []
    sampling_params_list = []
498
    return_logprobs = []
499
    logprob_start_lens = []
500
    top_logprobs_nums = []
501
    lora_paths = []
yichuan~'s avatar
yichuan~ committed
502

503
    for request in all_requests:
504
        # NOTE: with openai API, the prompt's logprobs are always not computed
505
        if request.echo and request.logprobs:
506
            logger.warning(
507
                "Echo is not compatible with logprobs. "
508
                "To compute logprobs of input prompt, please use the native /generate API."
509
510
            )

511
512
513
514
515
        prompt = request.prompt
        if is_completion_template_defined():
            prompt = generate_completion_prompt_from_request(request)
        prompts.append(prompt)

516
        lora_paths.append(request.lora_path)
517
518
519
520
        if request.echo and request.logprobs:
            current_logprob_start_len = 0
        else:
            current_logprob_start_len = -1
521
522
523
524
525
526
527
528
        sampling_params_list.append(
            {
                "temperature": request.temperature,
                "max_new_tokens": request.max_tokens,
                "min_new_tokens": request.min_tokens,
                "stop": request.stop,
                "stop_token_ids": request.stop_token_ids,
                "top_p": request.top_p,
529
530
                "top_k": request.top_k,
                "min_p": request.min_p,
531
532
533
534
535
                "presence_penalty": request.presence_penalty,
                "frequency_penalty": request.frequency_penalty,
                "repetition_penalty": request.repetition_penalty,
                "regex": request.regex,
                "json_schema": request.json_schema,
536
                "ebnf": request.ebnf,
537
538
                "n": request.n,
                "no_stop_trim": request.no_stop_trim,
539
540
                "ignore_eos": request.ignore_eos,
                "skip_special_tokens": request.skip_special_tokens,
541
542
            }
        )
543
        return_logprobs.append(request.logprobs is not None)
544
        logprob_start_lens.append(current_logprob_start_len)
545
546
547
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
548
549

    if len(all_requests) == 1:
550
551
552
553
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
            prompt_kwargs = {"text": prompts[0]}
        else:
            prompt_kwargs = {"input_ids": prompts[0]}
554
        sampling_params_list = sampling_params_list[0]
555
        return_logprobs = return_logprobs[0]
556
        logprob_start_lens = logprob_start_lens[0]
557
        top_logprobs_nums = top_logprobs_nums[0]
558
        lora_paths = lora_paths[0]
559
    else:
560
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
561
562
563
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
564

565
    adapted_request = GenerateReqInput(
566
        **prompt_kwargs,
567
        sampling_params=sampling_params_list,
568
569
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
570
        logprob_start_len=logprob_start_lens,
571
        return_text_in_logprobs=True,
572
        stream=all_requests[0].stream,
573
        rid=request_ids,
574
        lora_path=lora_paths,
575
    )
yichuan~'s avatar
yichuan~ committed
576

577
    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
578
579


580
581
582
def v1_generate_response(
    request, ret, tokenizer_manager, created, to_file=False, cache_report=False
):
583
584
585
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
586
    if (not isinstance(request, list)) and request.echo:
587
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
588
589
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
590
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
591
592
593
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
594
                tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
yichuan~'s avatar
yichuan~ committed
595
596
597
598
599
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
600
601
602
                tokenizer_manager.tokenizer.decode(
                    request.prompt, skip_special_tokens=True
                )
yichuan~'s avatar
yichuan~ committed
603
            ]
604
        else:
yichuan~'s avatar
yichuan~ committed
605
            # for the case of single str prompt
606
607
608
609
610
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
611
        if isinstance(request, list) and request[idx].echo:
612
613
            echo = True
            text = request[idx].prompt + text
614
        if echo and not isinstance(request, list):
yichuan~'s avatar
yichuan~ committed
615
616
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
617
618

        logprobs = False
619
        if isinstance(request, list) and request[idx].logprobs is not None:
620
            logprobs = True
621
        elif (not isinstance(request, list)) and request.logprobs is not None:
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

640
641
        finish_reason = ret_item["meta_info"]["finish_reason"]

642
        if to_file:
643
            # to make the choise data json serializable
644
645
646
647
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
648
649
650
651
652
                "finish_reason": (finish_reason["type"] if finish_reason else ""),
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
653
                ),
654
655
656
657
658
659
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
660
661
662
663
664
                finish_reason=(finish_reason["type"] if finish_reason else ""),
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
665
                ),
666
667
668
669
670
671
672
673
674
675
676
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
677
                    # remain the same but if needed we can change that
678
679
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
680
                    "created": created,
681
682
683
684
685
686
687
688
689
690
691
692
693
694
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
695
696
697
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
698
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
699
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
700
701
702
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
703
            created=created,
704
705
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
706
                prompt_tokens=prompt_tokens,
707
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
708
                total_tokens=prompt_tokens + completion_tokens,
709
710
711
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
712
713
714
715
716
            ),
        )
    return response


717
async def v1_completions(tokenizer_manager, raw_request: Request):
718
719
    request_json = await raw_request.json()
    all_requests = [CompletionRequest(**request_json)]
720
    created = int(time.time())
721
    adapted_request, request = v1_generate_request(all_requests)
722
723
724
725

    if adapted_request.stream:

        async def generate_stream_resp():
726
727
728
729
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
730
731
            cached_tokens = {}

732
            try:
733
                async for content in tokenizer_manager.generate_request(
734
735
                    adapted_request, raw_request
                ):
736
                    index = content.get("index", 0)
737
738
739
740

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

741
                    text = content["text"]
742
743
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
744
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
745
746
747

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
748
749
750
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
751
752
753
754
755
756
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
757
                                    prompts = tokenizer_manager.tokenizer.decode(
758
759
760
761
762
763
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
764
                                    prompts = tokenizer_manager.tokenizer.decode(
765
766
767
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
768

769
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
770
                            text = prompts + text
771

772
                    if request.logprobs is not None:
773
774
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
775
776
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
777
                            ]
778
779
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
780
781
                            ]
                        else:
782
783
                            input_token_logprobs = None
                            input_top_logprobs = None
784
785

                        logprobs = to_openai_style_logprobs(
786
787
788
789
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
790
                            ][n_prev_token:],
791
792
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
793
                            ][n_prev_token:],
794
                        )
795
                        n_prev_token = len(
796
                            content["meta_info"]["output_token_logprobs"]
797
                        )
798
                    else:
799
                        logprobs = None
800

801
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
802
                    stream_buffer = stream_buffer + delta
803
                    finish_reason = content["meta_info"]["finish_reason"]
804
                    choice_data = CompletionResponseStreamChoice(
805
                        index=index,
806
807
                        text=delta,
                        logprobs=logprobs,
808
809
810
811
812
                        finish_reason=(finish_reason["type"] if finish_reason else ""),
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
813
                        ),
814
815
816
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
817
                        created=created,
818
819
820
821
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
822
823
824
825

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

826
                    yield f"data: {chunk.model_dump_json()}\n\n"
827
                if request.stream_options and request.stream_options.include_usage:
828
829
830
831
832
833
834
835
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
836
837
838
839
840
841
842
843
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
844
                    usage = UsageInfo(
845
846
847
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
848
                        prompt_tokens_details=prompt_tokens_details,
849
850
851
                    )

                    final_usage_chunk = CompletionStreamResponse(
852
                        id=content["meta_info"]["id"],
853
                        created=created,
854
855
856
857
858
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
859
                        exclude_none=True
860
861
                    )
                    yield f"data: {final_usage_data}\n\n"
862
863
864
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
865
866
            yield "data: [DONE]\n\n"

867
868
869
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
870
            background=tokenizer_manager.create_abort_task(adapted_request),
871
        )
872
873

    # Non-streaming response.
874
    try:
875
        ret = await tokenizer_manager.generate_request(
876
877
            adapted_request, raw_request
        ).__anext__()
878
879
    except ValueError as e:
        return create_error_response(str(e))
880

881
882
883
    if not isinstance(ret, list):
        ret = [ret]

884
885
886
887
888
889
890
    response = v1_generate_response(
        request,
        ret,
        tokenizer_manager,
        created,
        cache_report=tokenizer_manager.server_args.enable_cache_report,
    )
891
    return response
892

893

894
def v1_chat_generate_request(
895
    all_requests: List[ChatCompletionRequest],
896
    tokenizer_manager,
897
    request_ids: List[str] = None,
898
):
899
    input_ids = []
900
901
    sampling_params_list = []
    image_data_list = []
902
    return_logprobs = []
903
    logprob_start_lens = []
904
    top_logprobs_nums = []
905
    modalities_list = []
906
    lora_paths = []
907
908
909

    # NOTE: with openai API, the prompt's logprobs are always not computed

910
911
912
913
914
915
916
917
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
        #    None skips any image processing in GenerateReqInput.
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
Tanjiro's avatar
Tanjiro committed
918
919
920
921
922
923
924
925
926
927
928
929
            tools = None
            if request.tools and request.tool_choice != "none":
                request.skip_special_tokens = False
                if not isinstance(request.tool_choice, str):
                    tools = [
                        item.function.model_dump()
                        for item in request.tools
                        if item.function.name == request.tool_choice.function.name
                    ]
                else:
                    tools = [item.function.model_dump() for item in request.tools]

930
            if chat_template_name is None:
931
932
933
934
935
936
937
938
939
940
941
942
943
                openai_compatible_messages = []
                for message in request.messages:
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
944
945
946
947
948
                if openai_compatible_messages[-1]["role"] == "assistant":
                    assistant_prefix = openai_compatible_messages[-1]["content"]
                    openai_compatible_messages = openai_compatible_messages[:-1]
                else:
                    assistant_prefix = None
YAMY's avatar
YAMY committed
949
950

                try:
951
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
952
953
954
955
956
957
958
959
960
961
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )
                except:
                    #  This except branch will be triggered when the chosen model
                    #  has a different tools input format that is not compatiable
                    #  with openAI's apply_chat_template tool_call format, like Mistral.
                    tools = [t if "function" in t else {"function": t} for t in tools]
962
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
963
964
965
966
967
968
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )

969
                if assistant_prefix:
970
971
972
973
974
                    encoded = tokenizer_manager.tokenizer.encode(assistant_prefix)
                    if (
                        encoded
                        and encoded[0] == tokenizer_manager.tokenizer.bos_token_id
                    ):
975
976
                        encoded = encoded[1:]
                    prompt_ids += encoded
977
978
                stop = request.stop
                image_data = None
979
                modalities = []
980
            else:
981
982
983
                conv = generate_chat_conv(request, chat_template_name)
                prompt = conv.get_prompt()
                image_data = conv.image_data
984
                modalities = conv.modalities
985
986
987
988
989
990
                stop = conv.stop_str or []
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
991
                prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
992
        else:
993
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
994
            prompt_ids = request.messages
995
996
            stop = request.stop
            image_data = None
997
            modalities = []
998
        input_ids.append(prompt_ids)
999
        return_logprobs.append(request.logprobs)
1000
        logprob_start_lens.append(-1)
1001
        top_logprobs_nums.append(request.top_logprobs or 0)
1002
        lora_paths.append(request.lora_path)
1003
1004
1005
1006
1007
1008
1009
1010

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
1011
1012
            "top_k": request.top_k,
            "min_p": request.min_p,
1013
1014
1015
1016
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
1017
            "ebnf": request.ebnf,
1018
            "n": request.n,
1019
            "no_stop_trim": request.no_stop_trim,
1020
            "ignore_eos": request.ignore_eos,
1021
            "skip_special_tokens": request.skip_special_tokens,
1022
        }
1023

1024
1025
1026
1027
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
1028
1029
1030
1031
1032
1033
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )
1034
1035
        sampling_params_list.append(sampling_params)

1036
        image_data_list.append(image_data)
1037
        modalities_list.append(modalities)
1038
    if len(all_requests) == 1:
1039
1040
        if isinstance(input_ids[0], str):
            prompt_kwargs = {"text": input_ids[0]}
yichuan~'s avatar
yichuan~ committed
1041
        else:
1042
            prompt_kwargs = {"input_ids": input_ids[0]}
1043
        sampling_params_list = sampling_params_list[0]
1044
        image_data_list = image_data_list[0]
1045
        return_logprobs = return_logprobs[0]
1046
        logprob_start_lens = logprob_start_lens[0]
1047
        top_logprobs_nums = top_logprobs_nums[0]
1048
        modalities_list = modalities_list[0]
1049
        lora_paths = lora_paths[0]
yichuan~'s avatar
yichuan~ committed
1050
1051
1052
1053
1054
    else:
        if isinstance(input_ids[0], str):
            prompt_kwargs = {"text": input_ids}
        else:
            prompt_kwargs = {"input_ids": input_ids}
1055

1056
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
1057
        **prompt_kwargs,
1058
        image_data=image_data_list,
1059
        sampling_params=sampling_params_list,
1060
        return_logprob=return_logprobs,
1061
        logprob_start_len=logprob_start_lens,
1062
1063
1064
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
1065
        rid=request_ids,
1066
        modalities=modalities_list,
1067
        lora_path=lora_paths,
1068
    )
1069
1070

    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
1071

1072

YAMY's avatar
YAMY committed
1073
def v1_chat_generate_response(
Xihuai Wang's avatar
Xihuai Wang committed
1074
1075
    request,
    ret,
1076
    created,
Xihuai Wang's avatar
Xihuai Wang committed
1077
1078
1079
1080
    to_file=False,
    cache_report=False,
    tool_call_parser=None,
    reasoning_parser=None,
YAMY's avatar
YAMY committed
1081
):
1082
1083
1084
    choices = []

    for idx, ret_item in enumerate(ret):
1085
        logprobs = False
yichuan~'s avatar
yichuan~ committed
1086
        if isinstance(request, list) and request[idx].logprobs:
1087
            logprobs = True
yichuan~'s avatar
yichuan~ committed
1088
        elif (not isinstance(request, list)) and request.logprobs:
1089
1090
1091
1092
1093
1094
1095
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
            token_logprobs = []
1096
1097
1098
            for token_idx, (token, logprob) in enumerate(
                zip(logprobs.tokens, logprobs.token_logprobs)
            ):
1099
1100
1101
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
1102
1103
1104
                    for top_token, top_logprob in logprobs.top_logprobs[
                        token_idx
                    ].items():
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1125

1126
1127
        finish_reason = ret_item["meta_info"]["finish_reason"]

Tanjiro's avatar
Tanjiro committed
1128
1129
1130
1131
1132
1133
        tool_calls = None
        text = ret_item["text"]

        if isinstance(request, list):
            tool_choice = request[idx].tool_choice
            tools = request[idx].tools
Xihuai Wang's avatar
Xihuai Wang committed
1134
            separate_reasoning = request[idx].separate_reasoning
Tanjiro's avatar
Tanjiro committed
1135
1136
1137
        else:
            tool_choice = request.tool_choice
            tools = request.tools
Xihuai Wang's avatar
Xihuai Wang committed
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
            separate_reasoning = request.separate_reasoning

        if reasoning_parser and separate_reasoning:
            try:
                parser = ReasoningParser(
                    model_type=reasoning_parser, stream_reasoning=False
                )
                reasoning_text, text = parser.parse_non_stream(text)
            except Exception as e:
                logger.error(f"Exception: {e}")
                return create_error_response(
                    HTTPStatus.BAD_REQUEST,
                    "Failed to parse reasoning related info to json format!",
                )
        else:
            reasoning_text = None
Tanjiro's avatar
Tanjiro committed
1154

1155
1156
1157
1158
1159
1160
1161
        if tool_choice != "none" and tools:
            parser = FunctionCallParser(tools, tool_call_parser)
            if parser.has_tool_call(text):
                if finish_reason["type"] == "stop":
                    finish_reason["type"] = "tool_calls"
                    finish_reason["matched"] = None
                try:
1162
                    text, call_info_list = parser.parse_non_stream(text)
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
                    tool_calls = [
                        ToolCall(
                            id=str(call_info.tool_index),
                            function=FunctionResponse(
                                name=call_info.name, arguments=call_info.parameters
                            ),
                        )
                        for call_info in call_info_list
                    ]
                except Exception as e:
                    logger.error(f"Exception: {e}")
                    return create_error_response(
                        HTTPStatus.BAD_REQUEST,
                        "Failed to parse fc related info to json format!",
Tanjiro's avatar
Tanjiro committed
1177
1178
                    )

1179
        if to_file:
1180
            # to make the choice data json serializable
1181
1182
            choice_data = {
                "index": 0,
Tanjiro's avatar
Tanjiro committed
1183
1184
                "message": {
                    "role": "assistant",
1185
                    "content": text if text else None,
Tanjiro's avatar
Tanjiro committed
1186
                    "tool_calls": tool_calls,
1187
                    "reasoning_content": reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1188
                },
1189
                "logprobs": choice_logprobs.model_dump() if choice_logprobs else None,
1190
1191
1192
1193
1194
                "finish_reason": (finish_reason["type"] if finish_reason else ""),
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1195
                ),
1196
            }
1197
        else:
1198
1199
            choice_data = ChatCompletionResponseChoice(
                index=idx,
Tanjiro's avatar
Tanjiro committed
1200
1201
                message=ChatMessage(
                    role="assistant",
1202
                    content=text if text else None,
Tanjiro's avatar
Tanjiro committed
1203
                    tool_calls=tool_calls,
1204
                    reasoning_content=reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1205
                ),
1206
                logprobs=choice_logprobs,
1207
1208
1209
1210
1211
                finish_reason=(finish_reason["type"] if finish_reason else ""),
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1212
                ),
1213
1214
1215
            )

        choices.append(choice_data)
1216

1217
1218
1219
1220
1221
1222
1223
1224
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1225
                    # remain the same but if needed we can change that
1226
1227
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
1228
                    "created": created,
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1242
    else:
1243
1244
1245
1246
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1247
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
1248
1249
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
1250
            created=created,
1251
1252
1253
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1254
1255
1256
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1257
1258
1259
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
1260
1261
1262
            ),
        )
        return response
1263

1264

1265
1266
1267
async def v1_chat_completions(
    tokenizer_manager, raw_request: Request, cache_report=False
):
1268
1269
    request_json = await raw_request.json()
    all_requests = [ChatCompletionRequest(**request_json)]
1270
    created = int(time.time())
1271
    adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
1272
1273

    if adapted_request.stream:
YAMY's avatar
YAMY committed
1274
        parser_dict = {}
Xihuai Wang's avatar
Xihuai Wang committed
1275
        reasoning_parser_dict = {}
1276
1277

        async def generate_stream_resp():
1278
1279
1280
1281
1282
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1283
            cached_tokens = {}
1284
            try:
1285
                async for content in tokenizer_manager.generate_request(
1286
1287
                    adapted_request, raw_request
                ):
1288
                    index = content.get("index", 0)
YAMY's avatar
YAMY committed
1289
                    text = content["text"]
1290
1291
1292
1293
1294
1295
1296

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
1297
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
yichuan~'s avatar
yichuan~ committed
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
                            ][n_prev_token:],
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1343
                    finish_reason = content["meta_info"]["finish_reason"]
Xihuai Wang's avatar
Xihuai Wang committed
1344
1345
1346
                    finish_reason_type = (
                        finish_reason["type"] if finish_reason else None
                    )
1347

1348
1349
1350
                    if is_first:
                        # First chunk with role
                        is_first = False
Xihuai Wang's avatar
Xihuai Wang committed
1351
1352
1353
1354
                        if (
                            tokenizer_manager.server_args.reasoning_parser
                            and request.separate_reasoning
                        ):
1355
1356
1357
                            delta = DeltaMessage(
                                role="assistant", reasoning_content=None
                            )
Xihuai Wang's avatar
Xihuai Wang committed
1358
                        else:
1359
                            delta = DeltaMessage(role="assistant", content=None)
1360
                        choice_data = ChatCompletionResponseStreamChoice(
1361
                            index=index,
Xihuai Wang's avatar
Xihuai Wang committed
1362
                            delta=delta,
1363
                            finish_reason=(
Xihuai Wang's avatar
Xihuai Wang committed
1364
1365
1366
                                None
                                if finish_reason_type and len(finish_reason_type) == 0
                                else finish_reason_type
1367
1368
1369
1370
1371
                            ),
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
1372
                            ),
yichuan~'s avatar
yichuan~ committed
1373
                            logprobs=choice_logprobs,
1374
1375
1376
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
1377
                            created=created,
1378
1379
1380
1381
1382
1383
1384
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
YAMY's avatar
YAMY committed
1385
                    new_stream_buffer = stream_buffer + delta
1386

Xihuai Wang's avatar
Xihuai Wang committed
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
                    if (
                        tokenizer_manager.server_args.reasoning_parser
                        and request.separate_reasoning
                    ):
                        if index not in reasoning_parser_dict:
                            reasoning_parser_dict[index] = ReasoningParser(
                                tokenizer_manager.server_args.reasoning_parser,
                                request.stream_reasoning,
                            )
                        reasoning_parser = reasoning_parser_dict[index]
                        reasoning_text, delta = reasoning_parser.parse_stream_chunk(
                            delta
                        )
                        if reasoning_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1403
1404
1405
1406
1407
                                delta=DeltaMessage(
                                    reasoning_content=(
                                        reasoning_text if reasoning_text else None
                                    )
                                ),
Xihuai Wang's avatar
Xihuai Wang committed
1408
1409
1410
1411
1412
1413
1414
1415
1416
                                finish_reason=(
                                    None
                                    if finish_reason_type
                                    and len(finish_reason_type) == 0
                                    else finish_reason_type
                                ),
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1417
                                created=created,
Xihuai Wang's avatar
Xihuai Wang committed
1418
1419
1420
1421
1422
1423
1424
1425
1426
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                        if (delta and len(delta) == 0) or not delta:
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                            continue

YAMY's avatar
YAMY committed
1427
1428
1429
1430
                    if request.tool_choice != "none" and request.tools:
                        if index not in parser_dict:
                            parser_dict[index] = FunctionCallParser(
                                tools=request.tools,
1431
                                tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
YAMY's avatar
YAMY committed
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
                            )
                        parser = parser_dict[index]

                        # parse_increment => returns (normal_text, calls)
                        normal_text, calls = parser.parse_stream_chunk(delta)

                        # 1) if there's normal_text, output it as normal content
                        if normal_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1442
1443
1444
                                delta=DeltaMessage(
                                    content=normal_text if normal_text else None
                                ),
YAMY's avatar
YAMY committed
1445
                                finish_reason=(
Xihuai Wang's avatar
Xihuai Wang committed
1446
1447
1448
1449
                                    None
                                    if finish_reason_type
                                    and len(finish_reason_type) == 0
                                    else finish_reason_type
YAMY's avatar
YAMY committed
1450
1451
1452
1453
                                ),
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1454
                                created=created,
YAMY's avatar
YAMY committed
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"

                        # 2) if we found calls, we output them as separate chunk(s)
                        for call_item in calls:
                            # transform call_item -> FunctionResponse + ToolCall

                            if (
                                content["meta_info"]["finish_reason"]
                                and content["meta_info"]["finish_reason"]["type"]
                                == "stop"
                            ):
                                latest_delta_len = 0
                                if isinstance(call_item.parameters, str):
                                    latest_delta_len = len(call_item.parameters)

                                expected_call = json.dumps(
                                    parser.multi_format_parser.detectors[0]
                                    .prev_tool_call_arr[index]
                                    .get("arguments", {}),
                                    ensure_ascii=False,
                                )
                                actual_call = parser.multi_format_parser.detectors[
                                    0
                                ].streamed_args_for_tool[index]
                                if latest_delta_len > 0:
                                    actual_call = actual_call[:-latest_delta_len]
                                remaining_call = expected_call.replace(
                                    actual_call, "", 1
                                )
                                call_item.parameters = remaining_call

                            tool_call = ToolCall(
                                id=str(call_item.tool_index),
                                function=FunctionResponse(
                                    name=call_item.name,
                                    arguments=call_item.parameters,
                                ),
                            )
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
                                delta=DeltaMessage(
                                    role="assistant", tool_calls=[tool_call]
                                ),
                                finish_reason="tool_call",
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1505
                                created=created,
YAMY's avatar
YAMY committed
1506
1507
1508
1509
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
1510

YAMY's avatar
YAMY committed
1511
1512
1513
1514
1515
1516
1517
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first

                    else:
                        # No tool calls => just treat this as normal text
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
1518
                            delta=DeltaMessage(content=delta if delta else None),
YAMY's avatar
YAMY committed
1519
                            finish_reason=(
Xihuai Wang's avatar
Xihuai Wang committed
1520
1521
1522
                                None
                                if finish_reason_type and len(finish_reason_type) == 0
                                else finish_reason_type
YAMY's avatar
YAMY committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
                            ),
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
                            ),
                            logprobs=choice_logprobs,
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
1533
                            created=created,
YAMY's avatar
YAMY committed
1534
1535
1536
1537
1538
1539
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first
1540
                if request.stream_options and request.stream_options.include_usage:
1541
1542
1543
1544
1545
1546
1547
1548
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1549
1550
1551
1552
1553
1554
1555
1556
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
1557
                    usage = UsageInfo(
1558
1559
1560
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1561
                        prompt_tokens_details=prompt_tokens_details,
1562
1563
1564
                    )

                    final_usage_chunk = ChatCompletionStreamResponse(
1565
                        id=content["meta_info"]["id"],
1566
                        created=created,
1567
1568
1569
1570
1571
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
1572
                        exclude_none=True
1573
1574
                    )
                    yield f"data: {final_usage_data}\n\n"
1575
1576
1577
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1578
1579
            yield "data: [DONE]\n\n"

1580
1581
1582
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
1583
            background=tokenizer_manager.create_abort_task(adapted_request),
1584
        )
1585
1586

    # Non-streaming response.
1587
    try:
1588
        ret = await tokenizer_manager.generate_request(
1589
1590
            adapted_request, raw_request
        ).__anext__()
1591
1592
    except ValueError as e:
        return create_error_response(str(e))
1593
1594
1595
    if not isinstance(ret, list):
        ret = [ret]

1596
    response = v1_chat_generate_response(
YAMY's avatar
YAMY committed
1597
1598
        request,
        ret,
1599
        created,
1600
1601
        cache_report=tokenizer_manager.server_args.enable_cache_report,
        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
Xihuai Wang's avatar
Xihuai Wang committed
1602
        reasoning_parser=tokenizer_manager.server_args.reasoning_parser,
1603
    )
1604

1605
1606
1607
    return response


1608
def v1_embedding_request(all_requests, tokenizer_manager):
1609
1610
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1611
    first_prompt_type = type(all_requests[0].input)
1612
1613

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1614
        prompt = request.input
1615
        assert (
1616
            type(prompt) is first_prompt_type
1617
1618
1619
1620
1621
1622
1623
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
        elif isinstance(prompt, list) and isinstance(
            prompt[0], MultimodalEmbeddingInput
        ):
            assert (
                chat_template_name is not None
            ), "chat_template_name is required for multimodal inputs"
            texts = []
            images = []
            for item in prompt:
                texts.append(item.text if item.text is not None else None)
                images.append(item.image if item.image is not None else None)
            convs = generate_embedding_convs(texts, images, chat_template_name)
            generate_prompts = []
            for conv in convs:
                generate_prompts.append(conv.get_prompt())
            if len(generate_prompts) == 1:
                prompt_kwargs = {"text": generate_prompts[0], "image_data": images[0]}
            else:
                prompt_kwargs = {"text": generate_prompts, "image_data": images}
1643
1644
1645
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
Baoyuan Qi's avatar
Baoyuan Qi committed
1646
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
1647
            prompt_kwargs = {"text": prompts}
1648
1649
1650
1651
1652
1653
1654
        elif isinstance(prompts[0], list) and isinstance(
            prompts[0][0], MultimodalEmbeddingInput
        ):
            # TODO: multiple requests
            raise NotImplementedError(
                "Multiple requests with multimodal inputs are not supported yet"
            )
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1667
1668
1669
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1670
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1671
1672
1673
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1674
1675
1676
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1687
1688


1689
async def v1_embeddings(tokenizer_manager, raw_request: Request):
1690
1691
    request_json = await raw_request.json()
    all_requests = [EmbeddingRequest(**request_json)]
1692
    adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)
1693
1694

    try:
1695
        ret = await tokenizer_manager.generate_request(
1696
1697
1698
1699
1700
1701
1702
1703
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

1704
    response = v1_embedding_response(ret, tokenizer_manager.model_path)
1705
1706
1707
1708

    return response


1709
def to_openai_style_logprobs(
1710
1711
1712
1713
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1714
1715
1716
1717
1718
1719
1720
1721
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1722
            # Not supported yet
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1734
1735
1736
1737
1738
1739
1740
1741
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1742

Liangsheng Yin's avatar
Liangsheng Yin committed
1743
    return ret_logprobs