"vscode:/vscode.git/clone" did not exist on "add091cca96ca99d289c97b354c66e85e1505875"
adapter.py 72.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
15

16
import asyncio
17
import json
18
import logging
19
import os
20
21
import time
import uuid
22
from http import HTTPStatus
Lianmin Zheng's avatar
Lianmin Zheng committed
23
from typing import Dict, List
24

25
from fastapi import HTTPException, Request, UploadFile
26
from fastapi.responses import ORJSONResponse, StreamingResponse
27
from pydantic import ValidationError
28

29
30
31
32
from sglang.srt.code_completion_parser import (
    generate_completion_prompt_from_request,
    is_completion_template_defined,
)
33
34
35
36
37
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
38
    generate_embedding_convs,
39
40
    register_conv_template,
)
41
from sglang.srt.function_call_parser import FunctionCallParser
Ying Sheng's avatar
Ying Sheng committed
42
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
43
from sglang.srt.openai_api.protocol import (
44
45
    BatchRequest,
    BatchResponse,
46
47
48
49
50
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
51
    ChatCompletionTokenLogprob,
52
    ChatMessage,
53
    ChoiceLogprobs,
54
55
56
57
58
59
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
60
    EmbeddingObject,
61
62
    EmbeddingRequest,
    EmbeddingResponse,
63
    ErrorResponse,
64
    FileDeleteResponse,
65
66
    FileRequest,
    FileResponse,
Tanjiro's avatar
Tanjiro committed
67
    FunctionResponse,
68
    LogProbs,
69
    MultimodalEmbeddingInput,
Tanjiro's avatar
Tanjiro committed
70
    ToolCall,
71
    TopLogprob,
72
73
    UsageInfo,
)
Xihuai Wang's avatar
Xihuai Wang committed
74
from sglang.srt.reasoning_parser import ReasoningParser
75
from sglang.utils import convert_json_schema_to_str, get_exception_traceback
76

77
78
logger = logging.getLogger(__name__)

79
80
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
81

82
83
84
85
86
87
88
89
90
91
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
92
# map file id to file path in SGLang backend
93
94
95
96
97
98
file_id_storage: Dict[str, str] = {}

# backend storage directory
storage_dir = None


99
100
101
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
102
103
104
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
105
    return ORJSONResponse(content=error.model_dump(), status_code=error.code)
106
107
108
109
110


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
111
112
113
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
114
115
116
117
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


118
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg, model_path):
119
120
    global chat_template_name

121
122
123
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
124

125
126
127
128
129
130
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
131
132
133
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
134
135
136
            tokenizer_manager.tokenizer.chat_template = chat_template.replace(
                "\\n", "\n"
            )
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
163
164
165
    else:
        chat_template_name = chat_template_arg

166
167
168
169
    # Check chat-template
    # TODO:
    # 1. Do not import any code from sglang.lang
    # 2. For VLM, when chat_template_arg is None, set it automatically by guessing from model_path.
170

171

172
173
174
async def v1_files_create(
    file: UploadFile, purpose: str, file_storage_path: str = None
):
175
176
    try:
        global storage_dir
177
178
        if file_storage_path:
            storage_dir = file_storage_path
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


213
214
215
216
217
218
219
220
221
222
223
224
225
226
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


227
async def v1_batches(tokenizer_manager, raw_request: Request):
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
248
        asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))
249
250
251
252
253
254
255
256
257
258

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


259
async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
283
        request_ids = []
284
        for line_id, line in enumerate(lines):
285
286
287
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
288
            request_ids.append(f"{batch_id}-req_{line_id}")
289
290
291
292
293
294

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

295
296
297
298
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
299

300
301
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
302
                all_requests, tokenizer_manager, request_ids=request_ids
303
304
            )
        elif end_point == "/v1/completions":
305
306
307
308
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

309
        try:
310
            created = int(time.time())
311
            ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
312
313
314
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
315
316
317
                responses = v1_chat_generate_response(
                    request,
                    ret,
318
                    created,
319
                    to_file=True,
320
321
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
                    tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
322
                )
323
            else:
yichuan~'s avatar
yichuan~ committed
324
                responses = v1_generate_response(
325
326
327
328
329
330
                    request,
                    ret,
                    tokenizer_manager,
                    created,
                    to_file=True,
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
yichuan~'s avatar
yichuan~ committed
331
                )
332
333

        except Exception as e:
334
335
            logger.error(f"error: {get_exception_traceback()}")
            responses = []
336
337
338
339
340
341
342
343
344
345
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
346
            # the batch_req here can be changed to be named within a batch granularity
347
348
349
350
351
352
353
354
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
355

356
357
358
359
360
361
362
363
364
365
366
367
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
368
369
370
371
372
373
374
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
375
376
377
378
379
380
381
382
383
384
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
385
        logger.error(f"error: {e}")
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


402
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
403
404
405
406
407
408
409
410
411
412
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
413
                tokenizer_manager=tokenizer_manager,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


430
async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        # Cancel requests by request_ids
446
447
        for line_id in range(len(lines)):
            rid = f"{batch_id}-req_{line_id}"
448
            tokenizer_manager.abort_request(rid=rid)
449
450
451
452
453
454
455
456
457
458
459
460
461

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


482
483
484
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
485
486
487
488
489
490
491
492
493
494
495
    if len(all_requests) > 1:
        first_prompt_type = type(all_requests[0].prompt)
        for request in all_requests:
            assert (
                type(request.prompt) is first_prompt_type
            ), "All prompts must be of the same type in file input settings"
            if request.n > 1:
                raise ValueError(
                    "Parallel sampling is not supported for completions from files"
                )

496
497
    prompts = []
    sampling_params_list = []
498
    return_logprobs = []
499
    logprob_start_lens = []
500
    top_logprobs_nums = []
501
    lora_paths = []
yichuan~'s avatar
yichuan~ committed
502

503
    for request in all_requests:
504
        # NOTE: with openai API, the prompt's logprobs are always not computed
505
        if request.echo and request.logprobs:
506
            logger.warning(
507
                "Echo is not compatible with logprobs. "
508
                "To compute logprobs of input prompt, please use the native /generate API."
509
510
            )

511
512
513
514
515
        prompt = request.prompt
        if is_completion_template_defined():
            prompt = generate_completion_prompt_from_request(request)
        prompts.append(prompt)

516
        lora_paths.append(request.lora_path)
517
518
519
520
        if request.echo and request.logprobs:
            current_logprob_start_len = 0
        else:
            current_logprob_start_len = -1
521
522
523
524
525
526
527
528
        sampling_params_list.append(
            {
                "temperature": request.temperature,
                "max_new_tokens": request.max_tokens,
                "min_new_tokens": request.min_tokens,
                "stop": request.stop,
                "stop_token_ids": request.stop_token_ids,
                "top_p": request.top_p,
529
530
                "top_k": request.top_k,
                "min_p": request.min_p,
531
532
533
534
535
                "presence_penalty": request.presence_penalty,
                "frequency_penalty": request.frequency_penalty,
                "repetition_penalty": request.repetition_penalty,
                "regex": request.regex,
                "json_schema": request.json_schema,
536
                "ebnf": request.ebnf,
537
538
                "n": request.n,
                "no_stop_trim": request.no_stop_trim,
539
540
                "ignore_eos": request.ignore_eos,
                "skip_special_tokens": request.skip_special_tokens,
541
542
            }
        )
543
        return_logprobs.append(request.logprobs is not None)
544
        logprob_start_lens.append(current_logprob_start_len)
545
546
547
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
548
549

    if len(all_requests) == 1:
550
551
552
553
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
            prompt_kwargs = {"text": prompts[0]}
        else:
            prompt_kwargs = {"input_ids": prompts[0]}
554
        sampling_params_list = sampling_params_list[0]
555
        return_logprobs = return_logprobs[0]
556
        logprob_start_lens = logprob_start_lens[0]
557
        top_logprobs_nums = top_logprobs_nums[0]
558
        lora_paths = lora_paths[0]
559
    else:
560
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
561
562
563
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
564

565
    adapted_request = GenerateReqInput(
566
        **prompt_kwargs,
567
        sampling_params=sampling_params_list,
568
569
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
570
        logprob_start_len=logprob_start_lens,
571
        return_text_in_logprobs=True,
572
        stream=all_requests[0].stream,
573
        rid=request_ids,
574
        lora_path=lora_paths,
575
    )
yichuan~'s avatar
yichuan~ committed
576

577
    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
578
579


580
581
582
def v1_generate_response(
    request, ret, tokenizer_manager, created, to_file=False, cache_report=False
):
583
584
585
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
586
    if (not isinstance(request, list)) and request.echo:
587
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
588
589
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
590
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
591
592
593
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
594
                tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
yichuan~'s avatar
yichuan~ committed
595
596
597
598
599
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
600
601
602
                tokenizer_manager.tokenizer.decode(
                    request.prompt, skip_special_tokens=True
                )
yichuan~'s avatar
yichuan~ committed
603
            ]
604
        else:
yichuan~'s avatar
yichuan~ committed
605
            # for the case of single str prompt
606
607
608
609
610
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
611
        if isinstance(request, list) and request[idx].echo:
612
613
            echo = True
            text = request[idx].prompt + text
614
        if echo and not isinstance(request, list):
yichuan~'s avatar
yichuan~ committed
615
616
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
617
618

        logprobs = False
619
        if isinstance(request, list) and request[idx].logprobs is not None:
620
            logprobs = True
621
        elif (not isinstance(request, list)) and request.logprobs is not None:
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

640
641
        finish_reason = ret_item["meta_info"]["finish_reason"]

642
        if to_file:
643
            # to make the choise data json serializable
644
645
646
647
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
648
                "finish_reason": finish_reason["type"] if finish_reason else None,
649
650
651
652
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
653
                ),
654
655
656
657
658
659
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
660
                finish_reason=finish_reason["type"] if finish_reason else None,
661
662
663
664
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
665
                ),
666
667
668
669
670
671
672
673
674
675
676
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
677
                    # remain the same but if needed we can change that
678
679
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
680
                    "created": created,
681
682
683
684
685
686
687
688
689
690
691
692
693
694
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
695
696
697
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
698
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
699
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
700
701
702
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
703
            created=created,
704
705
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
706
                prompt_tokens=prompt_tokens,
707
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
708
                total_tokens=prompt_tokens + completion_tokens,
709
710
711
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
712
713
714
715
716
            ),
        )
    return response


717
async def v1_completions(tokenizer_manager, raw_request: Request):
718
719
    request_json = await raw_request.json()
    all_requests = [CompletionRequest(**request_json)]
720
    created = int(time.time())
721
    adapted_request, request = v1_generate_request(all_requests)
722
723
724
725

    if adapted_request.stream:

        async def generate_stream_resp():
726
727
728
729
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
730
731
            cached_tokens = {}

732
            try:
733
                async for content in tokenizer_manager.generate_request(
734
735
                    adapted_request, raw_request
                ):
736
                    index = content.get("index", 0)
737
738
739
740

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

741
                    text = content["text"]
742
743
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
744
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
745
746
747

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
748
749
750
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
751
752
753
754
755
756
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
757
                                    prompts = tokenizer_manager.tokenizer.decode(
758
759
760
761
762
763
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
764
                                    prompts = tokenizer_manager.tokenizer.decode(
765
766
767
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
768

769
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
770
                            text = prompts + text
771

772
                    if request.logprobs is not None:
773
774
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
775
776
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
777
                            ]
778
779
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
780
781
                            ]
                        else:
782
783
                            input_token_logprobs = None
                            input_top_logprobs = None
784
785

                        logprobs = to_openai_style_logprobs(
786
787
788
789
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
790
                            ][n_prev_token:],
791
792
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
793
                            ][n_prev_token:],
794
                        )
795
                        n_prev_token = len(
796
                            content["meta_info"]["output_token_logprobs"]
797
                        )
798
                    else:
799
                        logprobs = None
800

801
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
802
                    stream_buffer = stream_buffer + delta
803
                    finish_reason = content["meta_info"]["finish_reason"]
804
                    choice_data = CompletionResponseStreamChoice(
805
                        index=index,
806
807
                        text=delta,
                        logprobs=logprobs,
808
                        finish_reason=finish_reason["type"] if finish_reason else None,
809
810
811
812
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
813
                        ),
814
815
816
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
817
                        created=created,
818
819
820
821
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
822
823
824
825

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

826
                    yield f"data: {chunk.model_dump_json()}\n\n"
827
                if request.stream_options and request.stream_options.include_usage:
828
829
830
831
832
833
834
835
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
836
837
838
839
840
841
842
843
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
844
                    usage = UsageInfo(
845
846
847
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
848
                        prompt_tokens_details=prompt_tokens_details,
849
850
851
                    )

                    final_usage_chunk = CompletionStreamResponse(
852
                        id=content["meta_info"]["id"],
853
                        created=created,
854
855
856
857
858
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
859
                        exclude_none=True
860
861
                    )
                    yield f"data: {final_usage_data}\n\n"
862
863
864
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
865
866
            yield "data: [DONE]\n\n"

867
868
869
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
870
            background=tokenizer_manager.create_abort_task(adapted_request),
871
        )
872
873

    # Non-streaming response.
874
    try:
875
        ret = await tokenizer_manager.generate_request(
876
877
            adapted_request, raw_request
        ).__anext__()
878
879
    except ValueError as e:
        return create_error_response(str(e))
880

881
882
883
    if not isinstance(ret, list):
        ret = [ret]

884
885
886
887
888
889
890
    response = v1_generate_response(
        request,
        ret,
        tokenizer_manager,
        created,
        cache_report=tokenizer_manager.server_args.enable_cache_report,
    )
891
    return response
892

893

894
def v1_chat_generate_request(
895
    all_requests: List[ChatCompletionRequest],
896
    tokenizer_manager,
897
    request_ids: List[str] = None,
898
):
899
    input_ids = []
Mick's avatar
Mick committed
900
    prompts = []
901
902
    sampling_params_list = []
    image_data_list = []
Mick's avatar
Mick committed
903
    audio_data_list = []
904
    return_logprobs = []
905
    logprob_start_lens = []
906
    top_logprobs_nums = []
907
    modalities_list = []
908
    lora_paths = []
909
910
911

    # NOTE: with openai API, the prompt's logprobs are always not computed

912
913
914
915
916
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
Mick's avatar
Mick committed
917
        #  - audio_data: None or a list of audio strings (URLs).
918
        #    None skips any image processing in GenerateReqInput.
919
        strict_tag = None
Mick's avatar
Mick committed
920
        prompt = ""
921
922
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
Tanjiro's avatar
Tanjiro committed
923
924
925
926
927
928
929
930
931
932
933
934
            tools = None
            if request.tools and request.tool_choice != "none":
                request.skip_special_tokens = False
                if not isinstance(request.tool_choice, str):
                    tools = [
                        item.function.model_dump()
                        for item in request.tools
                        if item.function.name == request.tool_choice.function.name
                    ]
                else:
                    tools = [item.function.model_dump() for item in request.tools]

935
936
937
938
                tool_call_parser = tokenizer_manager.server_args.tool_call_parser
                parser = FunctionCallParser(request.tools, tool_call_parser)
                strict_tag = parser.get_structure_tag()

939
            if chat_template_name is None:
940
941
942
943
944
945
946
947
948
949
950
951
952
                openai_compatible_messages = []
                for message in request.messages:
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
953
954
955
956
957
958
959
960
961
962
                if (
                    openai_compatible_messages
                    and openai_compatible_messages[-1]["role"] == "assistant"
                ):
                    if request.continue_final_message:
                        # Remove the final assistant message so its content can be continued.
                        assistant_prefix = openai_compatible_messages[-1]["content"]
                        openai_compatible_messages = openai_compatible_messages[:-1]
                    else:
                        assistant_prefix = None
963
964
                else:
                    assistant_prefix = None
YAMY's avatar
YAMY committed
965
966

                try:
967
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
968
969
970
971
972
973
974
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )
                except:
                    #  This except branch will be triggered when the chosen model
Mick's avatar
Mick committed
975
                    #  has a different tools input format that is not compatible
YAMY's avatar
YAMY committed
976
977
                    #  with openAI's apply_chat_template tool_call format, like Mistral.
                    tools = [t if "function" in t else {"function": t} for t in tools]
978
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
979
980
981
982
983
984
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )

985
                if assistant_prefix:
986
987
988
989
990
                    encoded = tokenizer_manager.tokenizer.encode(assistant_prefix)
                    if (
                        encoded
                        and encoded[0] == tokenizer_manager.tokenizer.bos_token_id
                    ):
991
992
                        encoded = encoded[1:]
                    prompt_ids += encoded
993
994
                if tokenizer_manager.model_config.is_multimodal:
                    prompt = tokenizer_manager.tokenizer.decode(prompt_ids)
995
996
                stop = request.stop
                image_data = None
Mick's avatar
Mick committed
997
                audio_data = None
998
                modalities = []
999
            else:
1000
                conv = generate_chat_conv(request, chat_template_name)
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
                # If we should continue the final assistant message, adjust the conversation.
                if (
                    request.continue_final_message
                    and request.messages
                    and request.messages[-1].role == "assistant"
                ):
                    # Remove the auto-added blank assistant turn, if present.
                    if conv.messages and conv.messages[-1][1] is None:
                        conv.messages.pop()
                    # Rebuild the prompt from the conversation.
                    prompt = conv.get_prompt()
                    # Strip any trailing stop tokens or separators that indicate end-of-assistant.
                    if isinstance(conv.stop_str, list):
                        for stop_token in conv.stop_str:
                            if prompt.endswith(stop_token):
                                prompt = prompt[: -len(stop_token)]
                    elif isinstance(conv.stop_str, str) and prompt.endswith(
                        conv.stop_str
                    ):
                        prompt = prompt[: -len(conv.stop_str)]
                    if conv.sep and prompt.endswith(conv.sep):
                        prompt = prompt[: -len(conv.sep)]
                    if getattr(conv, "sep2", None) and prompt.endswith(conv.sep2):
                        prompt = prompt[: -len(conv.sep2)]
                else:
                    prompt = conv.get_prompt()

1028
                image_data = conv.image_data
Mick's avatar
Mick committed
1029
                audio_data = conv.audio_data
1030
                modalities = conv.modalities
1031
1032
                stop = conv.stop_str or [] if not request.ignore_eos else []

1033
1034
1035
1036
1037
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
1038
                prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
1039

1040
        else:
1041
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
1042
            prompt_ids = request.messages
1043
1044
            stop = request.stop
            image_data = None
Mick's avatar
Mick committed
1045
            audio_data = None
1046
            modalities = []
Mick's avatar
Mick committed
1047
            prompt = request.messages
1048
        input_ids.append(prompt_ids)
1049
        return_logprobs.append(request.logprobs)
1050
        logprob_start_lens.append(-1)
1051
        top_logprobs_nums.append(request.top_logprobs or 0)
1052
        lora_paths.append(request.lora_path)
Mick's avatar
Mick committed
1053
        prompts.append(prompt)
1054
1055
1056
1057
1058
1059
1060
1061

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
1062
1063
            "top_k": request.top_k,
            "min_p": request.min_p,
1064
1065
1066
1067
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
1068
            "ebnf": request.ebnf,
1069
            "n": request.n,
1070
            "no_stop_trim": request.no_stop_trim,
1071
            "ignore_eos": request.ignore_eos,
1072
            "skip_special_tokens": request.skip_special_tokens,
1073
        }
1074

1075
1076
1077
1078
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
1079
1080
1081
1082
1083
1084
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

        if strict_tag is not None:
            if (
                sampling_params.get("regex")
                or sampling_params.get("ebnf")
                or sampling_params.get("structural_tag")
                or sampling_params.get("json_schema")
            ):
                logger.warning(
                    "Constrained decoding is not compatible with tool calls."
                )
            else:
                sampling_params["structural_tag"] = convert_json_schema_to_str(
                    strict_tag.model_dump(by_alias=True)
                )

1101
1102
        sampling_params_list.append(sampling_params)

1103
        image_data_list.append(image_data)
Mick's avatar
Mick committed
1104
        audio_data_list.append(audio_data)
1105
        modalities_list.append(modalities)
1106
    if len(all_requests) == 1:
Mick's avatar
Mick committed
1107
1108
1109
        if tokenizer_manager.model_config.is_multimodal:
            # processor will need text input
            prompt_kwargs = {"text": prompts[0]}
yichuan~'s avatar
yichuan~ committed
1110
        else:
Mick's avatar
Mick committed
1111
1112
1113
1114
            if isinstance(input_ids[0], str):
                prompt_kwargs = {"text": input_ids[0]}
            else:
                prompt_kwargs = {"input_ids": input_ids[0]}
1115
        sampling_params_list = sampling_params_list[0]
1116
        image_data_list = image_data_list[0]
Mick's avatar
Mick committed
1117
        audio_data_list = audio_data_list[0]
1118
        return_logprobs = return_logprobs[0]
1119
        logprob_start_lens = logprob_start_lens[0]
1120
        top_logprobs_nums = top_logprobs_nums[0]
1121
        modalities_list = modalities_list[0]
1122
        lora_paths = lora_paths[0]
yichuan~'s avatar
yichuan~ committed
1123
    else:
Mick's avatar
Mick committed
1124
1125
1126
        if tokenizer_manager.model_config.is_multimodal:
            # processor will need text input
            prompt_kwargs = {"text": prompts}
yichuan~'s avatar
yichuan~ committed
1127
        else:
Mick's avatar
Mick committed
1128
1129
1130
1131
            if isinstance(input_ids[0], str):
                prompt_kwargs = {"text": input_ids}
            else:
                prompt_kwargs = {"input_ids": input_ids}
1132

1133
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
1134
        **prompt_kwargs,
1135
        image_data=image_data_list,
Mick's avatar
Mick committed
1136
        audio_data=audio_data_list,
1137
        sampling_params=sampling_params_list,
1138
        return_logprob=return_logprobs,
1139
        logprob_start_len=logprob_start_lens,
1140
1141
1142
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
1143
        rid=request_ids,
1144
        modalities=modalities_list,
1145
        lora_path=lora_paths,
1146
    )
1147
1148

    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
1149

1150

YAMY's avatar
YAMY committed
1151
def v1_chat_generate_response(
Xihuai Wang's avatar
Xihuai Wang committed
1152
1153
    request,
    ret,
1154
    created,
Xihuai Wang's avatar
Xihuai Wang committed
1155
1156
1157
1158
    to_file=False,
    cache_report=False,
    tool_call_parser=None,
    reasoning_parser=None,
YAMY's avatar
YAMY committed
1159
):
1160
1161
1162
    choices = []

    for idx, ret_item in enumerate(ret):
1163
        logprobs = False
yichuan~'s avatar
yichuan~ committed
1164
        if isinstance(request, list) and request[idx].logprobs:
1165
            logprobs = True
yichuan~'s avatar
yichuan~ committed
1166
        elif (not isinstance(request, list)) and request.logprobs:
1167
1168
1169
1170
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
1171
1172
1173
                output_top_logprobs=ret_item["meta_info"].get(
                    "output_top_logprobs", None
                ),
1174
1175
            )
            token_logprobs = []
1176
1177
1178
            for token_idx, (token, logprob) in enumerate(
                zip(logprobs.tokens, logprobs.token_logprobs)
            ):
1179
1180
1181
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
1182
1183
1184
                    for top_token, top_logprob in logprobs.top_logprobs[
                        token_idx
                    ].items():
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1205

1206
1207
        finish_reason = ret_item["meta_info"]["finish_reason"]

Tanjiro's avatar
Tanjiro committed
1208
1209
1210
1211
1212
1213
        tool_calls = None
        text = ret_item["text"]

        if isinstance(request, list):
            tool_choice = request[idx].tool_choice
            tools = request[idx].tools
Xihuai Wang's avatar
Xihuai Wang committed
1214
            separate_reasoning = request[idx].separate_reasoning
Tanjiro's avatar
Tanjiro committed
1215
1216
1217
        else:
            tool_choice = request.tool_choice
            tools = request.tools
Xihuai Wang's avatar
Xihuai Wang committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
            separate_reasoning = request.separate_reasoning

        if reasoning_parser and separate_reasoning:
            try:
                parser = ReasoningParser(
                    model_type=reasoning_parser, stream_reasoning=False
                )
                reasoning_text, text = parser.parse_non_stream(text)
            except Exception as e:
                logger.error(f"Exception: {e}")
                return create_error_response(
                    HTTPStatus.BAD_REQUEST,
                    "Failed to parse reasoning related info to json format!",
                )
        else:
            reasoning_text = None
Tanjiro's avatar
Tanjiro committed
1234

1235
1236
1237
1238
1239
1240
1241
        if tool_choice != "none" and tools:
            parser = FunctionCallParser(tools, tool_call_parser)
            if parser.has_tool_call(text):
                if finish_reason["type"] == "stop":
                    finish_reason["type"] = "tool_calls"
                    finish_reason["matched"] = None
                try:
1242
                    text, call_info_list = parser.parse_non_stream(text)
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
                    tool_calls = [
                        ToolCall(
                            id=str(call_info.tool_index),
                            function=FunctionResponse(
                                name=call_info.name, arguments=call_info.parameters
                            ),
                        )
                        for call_info in call_info_list
                    ]
                except Exception as e:
                    logger.error(f"Exception: {e}")
                    return create_error_response(
                        HTTPStatus.BAD_REQUEST,
                        "Failed to parse fc related info to json format!",
Tanjiro's avatar
Tanjiro committed
1257
1258
                    )

1259
        if to_file:
1260
            # to make the choice data json serializable
1261
1262
            choice_data = {
                "index": 0,
Tanjiro's avatar
Tanjiro committed
1263
1264
                "message": {
                    "role": "assistant",
1265
                    "content": text if text else None,
Tanjiro's avatar
Tanjiro committed
1266
                    "tool_calls": tool_calls,
1267
                    "reasoning_content": reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1268
                },
1269
                "logprobs": choice_logprobs.model_dump() if choice_logprobs else None,
1270
                "finish_reason": finish_reason["type"] if finish_reason else None,
1271
1272
1273
1274
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1275
                ),
1276
            }
1277
        else:
1278
1279
            choice_data = ChatCompletionResponseChoice(
                index=idx,
Tanjiro's avatar
Tanjiro committed
1280
1281
                message=ChatMessage(
                    role="assistant",
1282
                    content=text if text else None,
Tanjiro's avatar
Tanjiro committed
1283
                    tool_calls=tool_calls,
1284
                    reasoning_content=reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1285
                ),
1286
                logprobs=choice_logprobs,
1287
                finish_reason=finish_reason["type"] if finish_reason else None,
1288
1289
1290
1291
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1292
                ),
1293
1294
1295
            )

        choices.append(choice_data)
1296

1297
1298
1299
1300
1301
1302
1303
1304
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1305
                    # remain the same but if needed we can change that
1306
1307
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
1308
                    "created": created,
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1322
    else:
1323
1324
1325
1326
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1327
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
1328
1329
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
1330
            created=created,
1331
1332
1333
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1334
1335
1336
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1337
1338
1339
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
1340
1341
1342
            ),
        )
        return response
1343

1344

1345
1346
1347
async def v1_chat_completions(
    tokenizer_manager, raw_request: Request, cache_report=False
):
1348
1349
    request_json = await raw_request.json()
    all_requests = [ChatCompletionRequest(**request_json)]
1350
    created = int(time.time())
1351
    adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
1352
1353

    if adapted_request.stream:
YAMY's avatar
YAMY committed
1354
        parser_dict = {}
Xihuai Wang's avatar
Xihuai Wang committed
1355
        reasoning_parser_dict = {}
1356
1357

        async def generate_stream_resp():
1358
1359
1360
1361
1362
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1363
            cached_tokens = {}
1364
            try:
1365
                async for content in tokenizer_manager.generate_request(
1366
1367
                    adapted_request, raw_request
                ):
1368
                    index = content.get("index", 0)
YAMY's avatar
YAMY committed
1369
                    text = content["text"]
1370
1371
1372
1373
1374
1375
1376

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
1377
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
yichuan~'s avatar
yichuan~ committed
1378
1379
1380
1381
1382
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
1383
1384
1385
                            output_top_logprobs=content["meta_info"].get(
                                "output_top_logprobs", []
                            )[n_prev_token:],
yichuan~'s avatar
yichuan~ committed
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1423
                    finish_reason = content["meta_info"]["finish_reason"]
Xihuai Wang's avatar
Xihuai Wang committed
1424
1425
1426
                    finish_reason_type = (
                        finish_reason["type"] if finish_reason else None
                    )
1427

1428
1429
1430
                    if is_first:
                        # First chunk with role
                        is_first = False
1431
                        delta = DeltaMessage(role="assistant")
1432
                        choice_data = ChatCompletionResponseStreamChoice(
1433
                            index=index,
Xihuai Wang's avatar
Xihuai Wang committed
1434
                            delta=delta,
1435
                            finish_reason=finish_reason_type,
1436
1437
1438
1439
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
1440
                            ),
yichuan~'s avatar
yichuan~ committed
1441
                            logprobs=choice_logprobs,
1442
1443
1444
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
1445
                            created=created,
1446
1447
1448
1449
1450
1451
1452
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
YAMY's avatar
YAMY committed
1453
                    new_stream_buffer = stream_buffer + delta
1454

Xihuai Wang's avatar
Xihuai Wang committed
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
                    if (
                        tokenizer_manager.server_args.reasoning_parser
                        and request.separate_reasoning
                    ):
                        if index not in reasoning_parser_dict:
                            reasoning_parser_dict[index] = ReasoningParser(
                                tokenizer_manager.server_args.reasoning_parser,
                                request.stream_reasoning,
                            )
                        reasoning_parser = reasoning_parser_dict[index]
                        reasoning_text, delta = reasoning_parser.parse_stream_chunk(
                            delta
                        )
                        if reasoning_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1471
1472
1473
1474
1475
                                delta=DeltaMessage(
                                    reasoning_content=(
                                        reasoning_text if reasoning_text else None
                                    )
                                ),
1476
                                finish_reason=finish_reason_type,
Xihuai Wang's avatar
Xihuai Wang committed
1477
1478
1479
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1480
                                created=created,
Xihuai Wang's avatar
Xihuai Wang committed
1481
1482
1483
1484
1485
1486
1487
1488
1489
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                        if (delta and len(delta) == 0) or not delta:
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                            continue

YAMY's avatar
YAMY committed
1490
1491
1492
1493
                    if request.tool_choice != "none" and request.tools:
                        if index not in parser_dict:
                            parser_dict[index] = FunctionCallParser(
                                tools=request.tools,
1494
                                tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
YAMY's avatar
YAMY committed
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
                            )
                        parser = parser_dict[index]

                        # parse_increment => returns (normal_text, calls)
                        normal_text, calls = parser.parse_stream_chunk(delta)

                        # 1) if there's normal_text, output it as normal content
                        if normal_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1505
1506
1507
                                delta=DeltaMessage(
                                    content=normal_text if normal_text else None
                                ),
1508
                                finish_reason=finish_reason_type,
YAMY's avatar
YAMY committed
1509
1510
1511
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1512
                                created=created,
YAMY's avatar
YAMY committed
1513
1514
1515
1516
1517
1518
1519
1520
1521
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"

                        # 2) if we found calls, we output them as separate chunk(s)
                        for call_item in calls:
                            # transform call_item -> FunctionResponse + ToolCall

1522
                            if finish_reason_type == "stop":
YAMY's avatar
YAMY committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
                                latest_delta_len = 0
                                if isinstance(call_item.parameters, str):
                                    latest_delta_len = len(call_item.parameters)

                                expected_call = json.dumps(
                                    parser.multi_format_parser.detectors[0]
                                    .prev_tool_call_arr[index]
                                    .get("arguments", {}),
                                    ensure_ascii=False,
                                )
                                actual_call = parser.multi_format_parser.detectors[
                                    0
                                ].streamed_args_for_tool[index]
                                if latest_delta_len > 0:
                                    actual_call = actual_call[:-latest_delta_len]
                                remaining_call = expected_call.replace(
                                    actual_call, "", 1
                                )
                                call_item.parameters = remaining_call

1543
1544
                                finish_reason_type = "tool_calls"

YAMY's avatar
YAMY committed
1545
1546
1547
1548
1549
1550
1551
1552
1553
                            tool_call = ToolCall(
                                id=str(call_item.tool_index),
                                function=FunctionResponse(
                                    name=call_item.name,
                                    arguments=call_item.parameters,
                                ),
                            )
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1554
1555
1556
1557
1558
1559
1560
                                delta=DeltaMessage(tool_calls=[tool_call]),
                                finish_reason=(
                                    None
                                    if request.stream_options
                                    and request.stream_options.include_usage
                                    else finish_reason_type
                                ),  # additional chunk will be return
YAMY's avatar
YAMY committed
1561
1562
1563
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1564
                                created=created,
YAMY's avatar
YAMY committed
1565
1566
1567
1568
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
1569

YAMY's avatar
YAMY committed
1570
1571
1572
1573
1574
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first

                    else:
                        # No tool calls => just treat this as normal text
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
                        if delta or not (
                            request.stream_options
                            and request.stream_options.include_usage
                        ):
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
                                delta=DeltaMessage(content=delta if delta else None),
                                finish_reason=(
                                    None
                                    if request.stream_options
                                    and request.stream_options.include_usage
                                    else finish_reason_type
                                ),
                                matched_stop=(
                                    finish_reason["matched"]
                                    if finish_reason and "matched" in finish_reason
                                    else None
                                ),
                                logprobs=choice_logprobs,
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
                                created=created,
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                if finish_reason_type == "stop" and request.tool_choice != "none":
                    parser = FunctionCallParser(
                        tools=request.tools,
                        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
                    )
                    if parser.has_tool_call(new_stream_buffer):
                        # if the stream ends with empty string after tool calls
                        finish_reason_type = "tool_calls"

1613
                if request.stream_options and request.stream_options.include_usage:
1614
1615
1616
1617
1618
1619
1620
1621
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1622
1623
1624
1625
1626
1627
1628
1629
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
1630
                    usage = UsageInfo(
1631
1632
1633
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1634
                        prompt_tokens_details=prompt_tokens_details,
1635
1636
                    )

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
                else:
                    usage = None
                final_usage_chunk = ChatCompletionStreamResponse(
                    id=content["meta_info"]["id"],
                    created=created,
                    choices=[
                        ChatCompletionResponseStreamChoice(
                            index=index,
                            delta=DeltaMessage(),
                            finish_reason=finish_reason_type,
                        )
                    ],
                    model=request.model,
                    usage=usage,
                )
                yield f"data: {final_usage_chunk.model_dump_json()}\n\n"
1653
1654
1655
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1656
1657
            yield "data: [DONE]\n\n"

1658
1659
1660
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
1661
            background=tokenizer_manager.create_abort_task(adapted_request),
1662
        )
1663
1664

    # Non-streaming response.
1665
    try:
1666
        ret = await tokenizer_manager.generate_request(
1667
1668
            adapted_request, raw_request
        ).__anext__()
1669
1670
    except ValueError as e:
        return create_error_response(str(e))
1671
1672
1673
    if not isinstance(ret, list):
        ret = [ret]

1674
    response = v1_chat_generate_response(
YAMY's avatar
YAMY committed
1675
1676
        request,
        ret,
1677
        created,
1678
1679
        cache_report=tokenizer_manager.server_args.enable_cache_report,
        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
Xihuai Wang's avatar
Xihuai Wang committed
1680
        reasoning_parser=tokenizer_manager.server_args.reasoning_parser,
1681
    )
1682

1683
1684
1685
    return response


1686
def v1_embedding_request(all_requests, tokenizer_manager):
1687
1688
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1689
    first_prompt_type = type(all_requests[0].input)
1690
1691

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1692
        prompt = request.input
1693
        assert (
1694
            type(prompt) is first_prompt_type
1695
1696
1697
1698
1699
1700
1701
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
1702
1703
1704
1705
1706
1707
        elif isinstance(prompt, list) and isinstance(
            prompt[0], MultimodalEmbeddingInput
        ):
            texts = []
            images = []
            for item in prompt:
uylnap's avatar
uylnap committed
1708
1709
                # TODO simply use padding for text, we should use a better way to handle this
                texts.append(item.text if item.text is not None else "padding")
1710
1711
                images.append(item.image if item.image is not None else None)
            generate_prompts = []
uylnap's avatar
uylnap committed
1712
1713
1714
1715
1716
1717
            if chat_template_name is not None:
                convs = generate_embedding_convs(texts, images, chat_template_name)
                for conv in convs:
                    generate_prompts.append(conv.get_prompt())
            else:
                generate_prompts = texts
1718
1719
1720
1721
            if len(generate_prompts) == 1:
                prompt_kwargs = {"text": generate_prompts[0], "image_data": images[0]}
            else:
                prompt_kwargs = {"text": generate_prompts, "image_data": images}
1722
1723
1724
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
Baoyuan Qi's avatar
Baoyuan Qi committed
1725
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
1726
            prompt_kwargs = {"text": prompts}
1727
1728
1729
1730
1731
1732
1733
        elif isinstance(prompts[0], list) and isinstance(
            prompts[0][0], MultimodalEmbeddingInput
        ):
            # TODO: multiple requests
            raise NotImplementedError(
                "Multiple requests with multimodal inputs are not supported yet"
            )
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1746
1747
1748
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1749
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1750
1751
1752
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1753
1754
1755
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1766
1767


1768
async def v1_embeddings(tokenizer_manager, raw_request: Request):
1769
1770
    request_json = await raw_request.json()
    all_requests = [EmbeddingRequest(**request_json)]
1771
    adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)
1772
1773

    try:
1774
        ret = await tokenizer_manager.generate_request(
1775
1776
1777
1778
1779
1780
1781
1782
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

1783
    response = v1_embedding_response(ret, tokenizer_manager.model_path)
1784
1785
1786
1787

    return response


1788
def to_openai_style_logprobs(
1789
1790
1791
1792
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1793
1794
1795
1796
1797
1798
1799
1800
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1801
            # Not supported yet
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1813
1814
1815
1816
1817
1818
1819
1820
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1821

Liangsheng Yin's avatar
Liangsheng Yin committed
1822
    return ret_logprobs