adapter.py 66.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
15

16
import asyncio
17
import json
18
import logging
19
import os
20
21
import time
import uuid
22
from http import HTTPStatus
23
from typing import Dict, List
24

25
from fastapi import HTTPException, Request, UploadFile
26
from fastapi.responses import ORJSONResponse, StreamingResponse
27
from pydantic import ValidationError
28

29
30
31
32
33
34
35
try:
    from outlines.fsm.json_schema import convert_json_schema_to_str
except ImportError:
    # Before outlines 0.0.47, convert_json_schema_to_str is under
    # outlines.integrations.utils
    from outlines.integrations.utils import convert_json_schema_to_str

36
37
38
39
from sglang.srt.code_completion_parser import (
    generate_completion_prompt_from_request,
    is_completion_template_defined,
)
40
41
42
43
44
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
45
    generate_embedding_convs,
46
47
    register_conv_template,
)
YAMY's avatar
YAMY committed
48
from sglang.srt.function_call_parser import TOOLS_TAG_LIST, FunctionCallParser
Ying Sheng's avatar
Ying Sheng committed
49
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
50
from sglang.srt.openai_api.protocol import (
51
52
    BatchRequest,
    BatchResponse,
53
54
55
56
57
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
58
    ChatCompletionTokenLogprob,
59
    ChatMessage,
60
    ChoiceLogprobs,
61
62
63
64
65
66
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
67
    EmbeddingObject,
68
69
    EmbeddingRequest,
    EmbeddingResponse,
70
    ErrorResponse,
71
    FileDeleteResponse,
72
73
    FileRequest,
    FileResponse,
Tanjiro's avatar
Tanjiro committed
74
    FunctionResponse,
75
    LogProbs,
76
    MultimodalEmbeddingInput,
Tanjiro's avatar
Tanjiro committed
77
    ToolCall,
78
    TopLogprob,
79
80
    UsageInfo,
)
Xihuai Wang's avatar
Xihuai Wang committed
81
from sglang.srt.reasoning_parser import ReasoningParser
82
from sglang.utils import get_exception_traceback
83

84
85
logger = logging.getLogger(__name__)

86
87
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
88

89
90
91
92
93
94
95
96
97
98
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
99
# map file id to file path in SGLang backend
100
101
102
103
104
105
file_id_storage: Dict[str, str] = {}

# backend storage directory
storage_dir = None


106
107
108
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
109
110
111
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
112
    return ORJSONResponse(content=error.model_dump(), status_code=error.code)
113
114
115
116
117


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
118
119
120
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
121
122
123
124
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


125
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg, model_path):
126
127
    global chat_template_name

128
129
130
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
131

132
133
134
135
136
137
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
138
139
140
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
141
142
143
            tokenizer_manager.tokenizer.chat_template = chat_template.replace(
                "\\n", "\n"
            )
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
170
171
172
    else:
        chat_template_name = chat_template_arg

173
174
175
176
    # Check chat-template
    # TODO:
    # 1. Do not import any code from sglang.lang
    # 2. For VLM, when chat_template_arg is None, set it automatically by guessing from model_path.
177

178

179
180
181
async def v1_files_create(
    file: UploadFile, purpose: str, file_storage_path: str = None
):
182
183
    try:
        global storage_dir
184
185
        if file_storage_path:
            storage_dir = file_storage_path
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


220
221
222
223
224
225
226
227
228
229
230
231
232
233
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


234
async def v1_batches(tokenizer_manager, raw_request: Request):
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
255
        asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))
256
257
258
259
260
261
262
263
264
265

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


266
async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
290
        request_ids = []
291
        for line_id, line in enumerate(lines):
292
293
294
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
295
            request_ids.append(f"{batch_id}-req_{line_id}")
296
297
298
299
300
301

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

302
303
304
305
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
306

307
308
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
309
                all_requests, tokenizer_manager, request_ids=request_ids
310
311
            )
        elif end_point == "/v1/completions":
312
313
314
315
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

316
        try:
317
            ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
318
319
320
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
321
322
323
324
                responses = v1_chat_generate_response(
                    request,
                    ret,
                    to_file=True,
325
326
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
                    tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
327
                )
328
            else:
yichuan~'s avatar
yichuan~ committed
329
                responses = v1_generate_response(
330
                    request, ret, tokenizer_manager, to_file=True
yichuan~'s avatar
yichuan~ committed
331
                )
332
333

        except Exception as e:
334
335
            logger.error(f"error: {get_exception_traceback()}")
            responses = []
336
337
338
339
340
341
342
343
344
345
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
346
            # the batch_req here can be changed to be named within a batch granularity
347
348
349
350
351
352
353
354
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
355

356
357
358
359
360
361
362
363
364
365
366
367
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
368
369
370
371
372
373
374
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
375
376
377
378
379
380
381
382
383
384
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
385
        logger.error(f"error: {e}")
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


402
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
403
404
405
406
407
408
409
410
411
412
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
413
                tokenizer_manager=tokenizer_manager,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


430
async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        # Cancel requests by request_ids
446
447
        for line_id in range(len(lines)):
            rid = f"{batch_id}-req_{line_id}"
448
            tokenizer_manager.abort_request(rid=rid)
449
450
451
452
453
454
455
456
457
458
459
460
461

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


482
483
484
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
485
486
487
488
489
490
491
492
493
494
495
    if len(all_requests) > 1:
        first_prompt_type = type(all_requests[0].prompt)
        for request in all_requests:
            assert (
                type(request.prompt) is first_prompt_type
            ), "All prompts must be of the same type in file input settings"
            if request.n > 1:
                raise ValueError(
                    "Parallel sampling is not supported for completions from files"
                )

496
497
    prompts = []
    sampling_params_list = []
498
    return_logprobs = []
499
    logprob_start_lens = []
500
    top_logprobs_nums = []
501
    lora_paths = []
yichuan~'s avatar
yichuan~ committed
502

503
    for request in all_requests:
504
        # NOTE: with openai API, the prompt's logprobs are always not computed
505
        if request.echo and request.logprobs:
506
            logger.warning(
507
                "Echo is not compatible with logprobs. "
508
                "To compute logprobs of input prompt, please use the native /generate API."
509
510
            )

511
512
513
514
515
        prompt = request.prompt
        if is_completion_template_defined():
            prompt = generate_completion_prompt_from_request(request)
        prompts.append(prompt)

516
        lora_paths.append(request.lora_path)
517
518
519
520
        if request.echo and request.logprobs:
            current_logprob_start_len = 0
        else:
            current_logprob_start_len = -1
521
522
523
524
525
526
527
528
        sampling_params_list.append(
            {
                "temperature": request.temperature,
                "max_new_tokens": request.max_tokens,
                "min_new_tokens": request.min_tokens,
                "stop": request.stop,
                "stop_token_ids": request.stop_token_ids,
                "top_p": request.top_p,
529
530
                "top_k": request.top_k,
                "min_p": request.min_p,
531
532
533
534
535
                "presence_penalty": request.presence_penalty,
                "frequency_penalty": request.frequency_penalty,
                "repetition_penalty": request.repetition_penalty,
                "regex": request.regex,
                "json_schema": request.json_schema,
536
                "ebnf": request.ebnf,
537
538
                "n": request.n,
                "no_stop_trim": request.no_stop_trim,
539
540
                "ignore_eos": request.ignore_eos,
                "skip_special_tokens": request.skip_special_tokens,
541
542
            }
        )
543
        return_logprobs.append(request.logprobs is not None)
544
        logprob_start_lens.append(current_logprob_start_len)
545
546
547
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
548
549

    if len(all_requests) == 1:
550
551
552
553
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
            prompt_kwargs = {"text": prompts[0]}
        else:
            prompt_kwargs = {"input_ids": prompts[0]}
554
        sampling_params_list = sampling_params_list[0]
555
        return_logprobs = return_logprobs[0]
556
        logprob_start_lens = logprob_start_lens[0]
557
        top_logprobs_nums = top_logprobs_nums[0]
558
        lora_paths = lora_paths[0]
559
    else:
560
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
561
562
563
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
564

565
    adapted_request = GenerateReqInput(
566
        **prompt_kwargs,
567
        sampling_params=sampling_params_list,
568
569
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
570
        logprob_start_len=logprob_start_lens,
571
        return_text_in_logprobs=True,
572
        stream=all_requests[0].stream,
573
        rid=request_ids,
574
        lora_path=lora_paths,
575
    )
yichuan~'s avatar
yichuan~ committed
576

577
    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
578
579


580
def v1_generate_response(request, ret, tokenizer_manager, to_file=False):
581
582
583
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
584
    if (not isinstance(request, list)) and request.echo:
585
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
586
587
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
588
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
589
590
591
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
592
                tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
yichuan~'s avatar
yichuan~ committed
593
594
595
596
597
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
598
599
600
                tokenizer_manager.tokenizer.decode(
                    request.prompt, skip_special_tokens=True
                )
yichuan~'s avatar
yichuan~ committed
601
            ]
602
        else:
yichuan~'s avatar
yichuan~ committed
603
            # for the case of single str prompt
604
605
606
607
608
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
609
        if isinstance(request, list) and request[idx].echo:
610
611
            echo = True
            text = request[idx].prompt + text
612
        if echo and not isinstance(request, list):
yichuan~'s avatar
yichuan~ committed
613
614
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
615
616

        logprobs = False
617
        if isinstance(request, list) and request[idx].logprobs is not None:
618
            logprobs = True
619
        elif (not isinstance(request, list)) and request.logprobs is not None:
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

638
639
        finish_reason = ret_item["meta_info"]["finish_reason"]

640
        if to_file:
641
            # to make the choise data json serializable
642
643
644
645
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
646
647
648
649
650
                "finish_reason": (finish_reason["type"] if finish_reason else ""),
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
651
                ),
652
653
654
655
656
657
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
658
659
660
661
662
                finish_reason=(finish_reason["type"] if finish_reason else ""),
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
663
                ),
664
665
666
667
668
669
670
671
672
673
674
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
675
                    # remain the same but if needed we can change that
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
693
694
695
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
696
697
698
699
700
701
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
702
                prompt_tokens=prompt_tokens,
703
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
704
                total_tokens=prompt_tokens + completion_tokens,
705
706
707
708
709
            ),
        )
    return response


710
async def v1_completions(tokenizer_manager, raw_request: Request):
711
712
713
    request_json = await raw_request.json()
    all_requests = [CompletionRequest(**request_json)]
    adapted_request, request = v1_generate_request(all_requests)
714
715
716
717

    if adapted_request.stream:

        async def generate_stream_resp():
718
719
720
721
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
722
            try:
723
                async for content in tokenizer_manager.generate_request(
724
725
                    adapted_request, raw_request
                ):
726
                    index = content.get("index", 0)
727
728
729
730

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

731
                    text = content["text"]
732
733
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
734
735
736

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
737
738
739
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
740
741
742
743
744
745
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
746
                                    prompts = tokenizer_manager.tokenizer.decode(
747
748
749
750
751
752
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
753
                                    prompts = tokenizer_manager.tokenizer.decode(
754
755
756
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
757

758
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
759
                            text = prompts + text
760

761
                    if request.logprobs is not None:
762
763
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
764
765
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
766
                            ]
767
768
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
769
770
                            ]
                        else:
771
772
                            input_token_logprobs = None
                            input_top_logprobs = None
773
774

                        logprobs = to_openai_style_logprobs(
775
776
777
778
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
779
                            ][n_prev_token:],
780
781
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
782
                            ][n_prev_token:],
783
                        )
784
                        n_prev_token = len(
785
                            content["meta_info"]["output_token_logprobs"]
786
                        )
787
                    else:
788
                        logprobs = None
789

790
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
791
                    stream_buffer = stream_buffer + delta
792
                    finish_reason = content["meta_info"]["finish_reason"]
793
                    choice_data = CompletionResponseStreamChoice(
794
                        index=index,
795
796
                        text=delta,
                        logprobs=logprobs,
797
798
799
800
801
                        finish_reason=(finish_reason["type"] if finish_reason else ""),
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
802
                        ),
803
804
805
806
807
808
809
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
810
811
812
813

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

814
                    yield f"data: {chunk.model_dump_json()}\n\n"
815
                if request.stream_options and request.stream_options.include_usage:
816
817
818
819
820
821
822
823
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
824
                    usage = UsageInfo(
825
826
827
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
828
829
830
                    )

                    final_usage_chunk = CompletionStreamResponse(
831
                        id=content["meta_info"]["id"],
832
833
834
835
836
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
837
                        exclude_none=True
838
839
                    )
                    yield f"data: {final_usage_data}\n\n"
840
841
842
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
843
844
            yield "data: [DONE]\n\n"

845
846
847
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
848
            background=tokenizer_manager.create_abort_task(adapted_request),
849
        )
850
851

    # Non-streaming response.
852
    try:
853
        ret = await tokenizer_manager.generate_request(
854
855
            adapted_request, raw_request
        ).__anext__()
856
857
    except ValueError as e:
        return create_error_response(str(e))
858

859
860
861
    if not isinstance(ret, list):
        ret = [ret]

862
    response = v1_generate_response(request, ret, tokenizer_manager)
863
    return response
864

865

866
def v1_chat_generate_request(
867
    all_requests: List[ChatCompletionRequest],
868
    tokenizer_manager,
869
    request_ids: List[str] = None,
870
):
871
    input_ids = []
872
873
    sampling_params_list = []
    image_data_list = []
874
    return_logprobs = []
875
    logprob_start_lens = []
876
    top_logprobs_nums = []
877
    modalities_list = []
878
    lora_paths = []
879
880
881

    # NOTE: with openai API, the prompt's logprobs are always not computed

882
883
884
885
886
887
888
889
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
        #    None skips any image processing in GenerateReqInput.
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
Tanjiro's avatar
Tanjiro committed
890
891
892
893
894
895
896
897
898
899
900
901
            tools = None
            if request.tools and request.tool_choice != "none":
                request.skip_special_tokens = False
                if not isinstance(request.tool_choice, str):
                    tools = [
                        item.function.model_dump()
                        for item in request.tools
                        if item.function.name == request.tool_choice.function.name
                    ]
                else:
                    tools = [item.function.model_dump() for item in request.tools]

902
            if chat_template_name is None:
903
904
905
906
907
908
909
910
911
912
913
914
915
                openai_compatible_messages = []
                for message in request.messages:
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
916
917
918
919
920
                if openai_compatible_messages[-1]["role"] == "assistant":
                    assistant_prefix = openai_compatible_messages[-1]["content"]
                    openai_compatible_messages = openai_compatible_messages[:-1]
                else:
                    assistant_prefix = None
YAMY's avatar
YAMY committed
921
922

                try:
923
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
924
925
926
927
928
929
930
931
932
933
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )
                except:
                    #  This except branch will be triggered when the chosen model
                    #  has a different tools input format that is not compatiable
                    #  with openAI's apply_chat_template tool_call format, like Mistral.
                    tools = [t if "function" in t else {"function": t} for t in tools]
934
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
935
936
937
938
939
940
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )

941
                if assistant_prefix:
942
943
944
945
946
                    encoded = tokenizer_manager.tokenizer.encode(assistant_prefix)
                    if (
                        encoded
                        and encoded[0] == tokenizer_manager.tokenizer.bos_token_id
                    ):
947
948
                        encoded = encoded[1:]
                    prompt_ids += encoded
949
950
                stop = request.stop
                image_data = None
951
                modalities = []
952
            else:
953
954
955
                conv = generate_chat_conv(request, chat_template_name)
                prompt = conv.get_prompt()
                image_data = conv.image_data
956
                modalities = conv.modalities
957
958
959
960
961
962
                stop = conv.stop_str or []
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
963
                prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
964
        else:
965
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
966
            prompt_ids = request.messages
967
968
            stop = request.stop
            image_data = None
969
            modalities = []
970
        input_ids.append(prompt_ids)
971
        return_logprobs.append(request.logprobs)
972
        logprob_start_lens.append(-1)
973
        top_logprobs_nums.append(request.top_logprobs or 0)
974
        lora_paths.append(request.lora_path)
975
976
977
978
979
980
981
982

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
983
984
            "top_k": request.top_k,
            "min_p": request.min_p,
985
986
987
988
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
989
            "ebnf": request.ebnf,
990
            "n": request.n,
991
            "no_stop_trim": request.no_stop_trim,
992
            "ignore_eos": request.ignore_eos,
993
            "skip_special_tokens": request.skip_special_tokens,
994
        }
995

996
997
998
999
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
1000
1001
1002
1003
1004
1005
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )
1006
1007
        sampling_params_list.append(sampling_params)

1008
        image_data_list.append(image_data)
1009
        modalities_list.append(modalities)
1010
    if len(all_requests) == 1:
1011
1012
        if isinstance(input_ids[0], str):
            prompt_kwargs = {"text": input_ids[0]}
yichuan~'s avatar
yichuan~ committed
1013
        else:
1014
            prompt_kwargs = {"input_ids": input_ids[0]}
1015
        sampling_params_list = sampling_params_list[0]
1016
        image_data_list = image_data_list[0]
1017
        return_logprobs = return_logprobs[0]
1018
        logprob_start_lens = logprob_start_lens[0]
1019
        top_logprobs_nums = top_logprobs_nums[0]
1020
        modalities_list = modalities_list[0]
1021
        lora_paths = lora_paths[0]
yichuan~'s avatar
yichuan~ committed
1022
1023
1024
1025
1026
    else:
        if isinstance(input_ids[0], str):
            prompt_kwargs = {"text": input_ids}
        else:
            prompt_kwargs = {"input_ids": input_ids}
1027

1028
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
1029
        **prompt_kwargs,
1030
        image_data=image_data_list,
1031
        sampling_params=sampling_params_list,
1032
        return_logprob=return_logprobs,
1033
        logprob_start_len=logprob_start_lens,
1034
1035
1036
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
1037
        rid=request_ids,
1038
        modalities=modalities_list,
1039
        lora_path=lora_paths,
1040
    )
1041
1042

    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
1043

1044

YAMY's avatar
YAMY committed
1045
def v1_chat_generate_response(
Xihuai Wang's avatar
Xihuai Wang committed
1046
1047
1048
1049
1050
1051
    request,
    ret,
    to_file=False,
    cache_report=False,
    tool_call_parser=None,
    reasoning_parser=None,
YAMY's avatar
YAMY committed
1052
):
1053
1054
1055
    choices = []

    for idx, ret_item in enumerate(ret):
1056
        logprobs = False
yichuan~'s avatar
yichuan~ committed
1057
        if isinstance(request, list) and request[idx].logprobs:
1058
            logprobs = True
yichuan~'s avatar
yichuan~ committed
1059
        elif (not isinstance(request, list)) and request.logprobs:
1060
1061
1062
1063
1064
1065
1066
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
            token_logprobs = []
1067
1068
1069
            for token_idx, (token, logprob) in enumerate(
                zip(logprobs.tokens, logprobs.token_logprobs)
            ):
1070
1071
1072
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
1073
1074
1075
                    for top_token, top_logprob in logprobs.top_logprobs[
                        token_idx
                    ].items():
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1096

1097
1098
        finish_reason = ret_item["meta_info"]["finish_reason"]

Tanjiro's avatar
Tanjiro committed
1099
1100
1101
1102
1103
1104
        tool_calls = None
        text = ret_item["text"]

        if isinstance(request, list):
            tool_choice = request[idx].tool_choice
            tools = request[idx].tools
Xihuai Wang's avatar
Xihuai Wang committed
1105
            separate_reasoning = request[idx].separate_reasoning
Tanjiro's avatar
Tanjiro committed
1106
1107
1108
        else:
            tool_choice = request.tool_choice
            tools = request.tools
Xihuai Wang's avatar
Xihuai Wang committed
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
            separate_reasoning = request.separate_reasoning

        if reasoning_parser and separate_reasoning:
            try:
                parser = ReasoningParser(
                    model_type=reasoning_parser, stream_reasoning=False
                )
                reasoning_text, text = parser.parse_non_stream(text)
            except Exception as e:
                logger.error(f"Exception: {e}")
                return create_error_response(
                    HTTPStatus.BAD_REQUEST,
                    "Failed to parse reasoning related info to json format!",
                )
        else:
            reasoning_text = None
Tanjiro's avatar
Tanjiro committed
1125

1126
1127
1128
1129
1130
1131
1132
        if tool_choice != "none" and tools:
            parser = FunctionCallParser(tools, tool_call_parser)
            if parser.has_tool_call(text):
                if finish_reason["type"] == "stop":
                    finish_reason["type"] = "tool_calls"
                    finish_reason["matched"] = None
                try:
1133
                    text, call_info_list = parser.parse_non_stream(text)
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
                    tool_calls = [
                        ToolCall(
                            id=str(call_info.tool_index),
                            function=FunctionResponse(
                                name=call_info.name, arguments=call_info.parameters
                            ),
                        )
                        for call_info in call_info_list
                    ]
                except Exception as e:
                    logger.error(f"Exception: {e}")
                    return create_error_response(
                        HTTPStatus.BAD_REQUEST,
                        "Failed to parse fc related info to json format!",
Tanjiro's avatar
Tanjiro committed
1148
1149
                    )

1150
        if to_file:
1151
            # to make the choice data json serializable
1152
1153
            choice_data = {
                "index": 0,
Tanjiro's avatar
Tanjiro committed
1154
1155
                "message": {
                    "role": "assistant",
1156
                    "content": text if text else None,
Tanjiro's avatar
Tanjiro committed
1157
                    "tool_calls": tool_calls,
1158
                    "reasoning_content": reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1159
                },
1160
                "logprobs": choice_logprobs.model_dump() if choice_logprobs else None,
1161
1162
1163
1164
1165
                "finish_reason": (finish_reason["type"] if finish_reason else ""),
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1166
                ),
1167
            }
1168
        else:
1169
1170
            choice_data = ChatCompletionResponseChoice(
                index=idx,
Tanjiro's avatar
Tanjiro committed
1171
1172
                message=ChatMessage(
                    role="assistant",
1173
                    content=text if text else None,
Tanjiro's avatar
Tanjiro committed
1174
                    tool_calls=tool_calls,
1175
                    reasoning_content=reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1176
                ),
1177
                logprobs=choice_logprobs,
1178
1179
1180
1181
1182
                finish_reason=(finish_reason["type"] if finish_reason else ""),
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1183
                ),
1184
1185
1186
            )

        choices.append(choice_data)
1187

1188
1189
1190
1191
1192
1193
1194
1195
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1196
                    # remain the same but if needed we can change that
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1213
    else:
1214
1215
1216
1217
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1218
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
1219
1220
1221
1222
1223
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1224
1225
1226
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1227
1228
1229
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
1230
1231
1232
            ),
        )
        return response
1233

1234

1235
async def v1_chat_completions(tokenizer_manager, raw_request: Request):
1236
1237
    request_json = await raw_request.json()
    all_requests = [ChatCompletionRequest(**request_json)]
1238
    adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
1239
1240

    if adapted_request.stream:
YAMY's avatar
YAMY committed
1241
        parser_dict = {}
Xihuai Wang's avatar
Xihuai Wang committed
1242
        reasoning_parser_dict = {}
1243
1244

        async def generate_stream_resp():
1245
1246
1247
1248
1249
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1250
            try:
1251
                async for content in tokenizer_manager.generate_request(
1252
1253
                    adapted_request, raw_request
                ):
1254
                    index = content.get("index", 0)
YAMY's avatar
YAMY committed
1255
                    text = content["text"]
1256
1257
1258
1259
1260
1261
1262

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
yichuan~'s avatar
yichuan~ committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
                            ][n_prev_token:],
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1308
                    finish_reason = content["meta_info"]["finish_reason"]
Xihuai Wang's avatar
Xihuai Wang committed
1309
1310
1311
                    finish_reason_type = (
                        finish_reason["type"] if finish_reason else None
                    )
1312

1313
1314
1315
                    if is_first:
                        # First chunk with role
                        is_first = False
Xihuai Wang's avatar
Xihuai Wang committed
1316
1317
1318
1319
                        if (
                            tokenizer_manager.server_args.reasoning_parser
                            and request.separate_reasoning
                        ):
1320
1321
1322
                            delta = DeltaMessage(
                                role="assistant", reasoning_content=None
                            )
Xihuai Wang's avatar
Xihuai Wang committed
1323
                        else:
1324
                            delta = DeltaMessage(role="assistant", content=None)
1325
                        choice_data = ChatCompletionResponseStreamChoice(
1326
                            index=index,
Xihuai Wang's avatar
Xihuai Wang committed
1327
                            delta=delta,
1328
                            finish_reason=(
Xihuai Wang's avatar
Xihuai Wang committed
1329
1330
1331
                                None
                                if finish_reason_type and len(finish_reason_type) == 0
                                else finish_reason_type
1332
1333
1334
1335
1336
                            ),
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
1337
                            ),
yichuan~'s avatar
yichuan~ committed
1338
                            logprobs=choice_logprobs,
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
YAMY's avatar
YAMY committed
1349
                    new_stream_buffer = stream_buffer + delta
1350

Xihuai Wang's avatar
Xihuai Wang committed
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
                    if (
                        tokenizer_manager.server_args.reasoning_parser
                        and request.separate_reasoning
                    ):
                        if index not in reasoning_parser_dict:
                            reasoning_parser_dict[index] = ReasoningParser(
                                tokenizer_manager.server_args.reasoning_parser,
                                request.stream_reasoning,
                            )
                        reasoning_parser = reasoning_parser_dict[index]
                        reasoning_text, delta = reasoning_parser.parse_stream_chunk(
                            delta
                        )
                        if reasoning_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1367
1368
1369
1370
1371
                                delta=DeltaMessage(
                                    reasoning_content=(
                                        reasoning_text if reasoning_text else None
                                    )
                                ),
Xihuai Wang's avatar
Xihuai Wang committed
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
                                finish_reason=(
                                    None
                                    if finish_reason_type
                                    and len(finish_reason_type) == 0
                                    else finish_reason_type
                                ),
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                        if (delta and len(delta) == 0) or not delta:
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                            continue

YAMY's avatar
YAMY committed
1390
1391
1392
1393
                    if request.tool_choice != "none" and request.tools:
                        if index not in parser_dict:
                            parser_dict[index] = FunctionCallParser(
                                tools=request.tools,
1394
                                tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
YAMY's avatar
YAMY committed
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
                            )
                        parser = parser_dict[index]

                        # parse_increment => returns (normal_text, calls)
                        normal_text, calls = parser.parse_stream_chunk(delta)

                        # 1) if there's normal_text, output it as normal content
                        if normal_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1405
1406
1407
                                delta=DeltaMessage(
                                    content=normal_text if normal_text else None
                                ),
YAMY's avatar
YAMY committed
1408
                                finish_reason=(
Xihuai Wang's avatar
Xihuai Wang committed
1409
1410
1411
1412
                                    None
                                    if finish_reason_type
                                    and len(finish_reason_type) == 0
                                    else finish_reason_type
YAMY's avatar
YAMY committed
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
                                ),
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"

                        # 2) if we found calls, we output them as separate chunk(s)
                        for call_item in calls:
                            # transform call_item -> FunctionResponse + ToolCall

                            if (
                                content["meta_info"]["finish_reason"]
                                and content["meta_info"]["finish_reason"]["type"]
                                == "stop"
                            ):
                                latest_delta_len = 0
                                if isinstance(call_item.parameters, str):
                                    latest_delta_len = len(call_item.parameters)

                                expected_call = json.dumps(
                                    parser.multi_format_parser.detectors[0]
                                    .prev_tool_call_arr[index]
                                    .get("arguments", {}),
                                    ensure_ascii=False,
                                )
                                actual_call = parser.multi_format_parser.detectors[
                                    0
                                ].streamed_args_for_tool[index]
                                if latest_delta_len > 0:
                                    actual_call = actual_call[:-latest_delta_len]
                                remaining_call = expected_call.replace(
                                    actual_call, "", 1
                                )
                                call_item.parameters = remaining_call

                            tool_call = ToolCall(
                                id=str(call_item.tool_index),
                                function=FunctionResponse(
                                    name=call_item.name,
                                    arguments=call_item.parameters,
                                ),
                            )
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
                                delta=DeltaMessage(
                                    role="assistant", tool_calls=[tool_call]
                                ),
                                finish_reason="tool_call",
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
1471

YAMY's avatar
YAMY committed
1472
1473
1474
1475
1476
1477
1478
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first

                    else:
                        # No tool calls => just treat this as normal text
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
1479
                            delta=DeltaMessage(content=delta if delta else None),
YAMY's avatar
YAMY committed
1480
                            finish_reason=(
Xihuai Wang's avatar
Xihuai Wang committed
1481
1482
1483
                                None
                                if finish_reason_type and len(finish_reason_type) == 0
                                else finish_reason_type
YAMY's avatar
YAMY committed
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
                            ),
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
                            ),
                            logprobs=choice_logprobs,
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first
1500
                if request.stream_options and request.stream_options.include_usage:
1501
1502
1503
1504
1505
1506
1507
1508
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1509
                    usage = UsageInfo(
1510
1511
1512
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1513
1514
1515
                    )

                    final_usage_chunk = ChatCompletionStreamResponse(
1516
                        id=content["meta_info"]["id"],
1517
1518
1519
1520
1521
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
1522
                        exclude_none=True
1523
1524
                    )
                    yield f"data: {final_usage_data}\n\n"
1525
1526
1527
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1528
1529
            yield "data: [DONE]\n\n"

1530
1531
1532
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
1533
            background=tokenizer_manager.create_abort_task(adapted_request),
1534
        )
1535
1536

    # Non-streaming response.
1537
    try:
1538
        ret = await tokenizer_manager.generate_request(
1539
1540
            adapted_request, raw_request
        ).__anext__()
1541
1542
    except ValueError as e:
        return create_error_response(str(e))
1543
1544
1545
    if not isinstance(ret, list):
        ret = [ret]

1546
    response = v1_chat_generate_response(
YAMY's avatar
YAMY committed
1547
1548
        request,
        ret,
1549
1550
        cache_report=tokenizer_manager.server_args.enable_cache_report,
        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
Xihuai Wang's avatar
Xihuai Wang committed
1551
        reasoning_parser=tokenizer_manager.server_args.reasoning_parser,
1552
    )
1553

1554
1555
1556
    return response


1557
def v1_embedding_request(all_requests, tokenizer_manager):
1558
1559
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1560
    first_prompt_type = type(all_requests[0].input)
1561
1562

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1563
        prompt = request.input
1564
        assert (
1565
            type(prompt) is first_prompt_type
1566
1567
1568
1569
1570
1571
1572
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
        elif isinstance(prompt, list) and isinstance(
            prompt[0], MultimodalEmbeddingInput
        ):
            assert (
                chat_template_name is not None
            ), "chat_template_name is required for multimodal inputs"
            texts = []
            images = []
            for item in prompt:
                texts.append(item.text if item.text is not None else None)
                images.append(item.image if item.image is not None else None)
            convs = generate_embedding_convs(texts, images, chat_template_name)
            generate_prompts = []
            for conv in convs:
                generate_prompts.append(conv.get_prompt())
            if len(generate_prompts) == 1:
                prompt_kwargs = {"text": generate_prompts[0], "image_data": images[0]}
            else:
                prompt_kwargs = {"text": generate_prompts, "image_data": images}
1592
1593
1594
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
Baoyuan Qi's avatar
Baoyuan Qi committed
1595
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
1596
            prompt_kwargs = {"text": prompts}
1597
1598
1599
1600
1601
1602
1603
        elif isinstance(prompts[0], list) and isinstance(
            prompts[0][0], MultimodalEmbeddingInput
        ):
            # TODO: multiple requests
            raise NotImplementedError(
                "Multiple requests with multimodal inputs are not supported yet"
            )
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1616
1617
1618
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1619
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1620
1621
1622
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1623
1624
1625
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1636
1637


1638
async def v1_embeddings(tokenizer_manager, raw_request: Request):
1639
1640
    request_json = await raw_request.json()
    all_requests = [EmbeddingRequest(**request_json)]
1641
    adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)
1642
1643

    try:
1644
        ret = await tokenizer_manager.generate_request(
1645
1646
1647
1648
1649
1650
1651
1652
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

1653
    response = v1_embedding_response(ret, tokenizer_manager.model_path)
1654
1655
1656
1657

    return response


1658
def to_openai_style_logprobs(
1659
1660
1661
1662
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1663
1664
1665
1666
1667
1668
1669
1670
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1671
            # Not supported yet
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1683
1684
1685
1686
1687
1688
1689
1690
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1691

Liangsheng Yin's avatar
Liangsheng Yin committed
1692
    return ret_logprobs