adapter.py 70.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
15

16
import asyncio
17
import json
18
import logging
19
import os
20
21
import time
import uuid
22
from http import HTTPStatus
Lianmin Zheng's avatar
Lianmin Zheng committed
23
from typing import Dict, List
24

25
from fastapi import HTTPException, Request, UploadFile
26
from fastapi.responses import ORJSONResponse, StreamingResponse
27
from pydantic import ValidationError
28

29
30
31
32
from sglang.srt.code_completion_parser import (
    generate_completion_prompt_from_request,
    is_completion_template_defined,
)
33
34
35
36
37
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
38
    generate_embedding_convs,
39
40
    register_conv_template,
)
41
from sglang.srt.function_call_parser import FunctionCallParser
Ying Sheng's avatar
Ying Sheng committed
42
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
43
from sglang.srt.openai_api.protocol import (
44
45
    BatchRequest,
    BatchResponse,
46
47
48
49
50
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
51
    ChatCompletionTokenLogprob,
52
    ChatMessage,
53
    ChoiceLogprobs,
54
55
56
57
58
59
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
60
    EmbeddingObject,
61
62
    EmbeddingRequest,
    EmbeddingResponse,
63
    ErrorResponse,
64
    FileDeleteResponse,
65
66
    FileRequest,
    FileResponse,
Tanjiro's avatar
Tanjiro committed
67
    FunctionResponse,
68
    LogProbs,
69
    MultimodalEmbeddingInput,
Tanjiro's avatar
Tanjiro committed
70
    ToolCall,
71
    TopLogprob,
72
73
    UsageInfo,
)
Xihuai Wang's avatar
Xihuai Wang committed
74
from sglang.srt.reasoning_parser import ReasoningParser
75
from sglang.utils import convert_json_schema_to_str, get_exception_traceback
76

77
78
logger = logging.getLogger(__name__)

79
80
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
81

82
83
84
85
86
87
88
89
90
91
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
92
# map file id to file path in SGLang backend
93
94
95
96
97
98
file_id_storage: Dict[str, str] = {}

# backend storage directory
storage_dir = None


99
100
101
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
102
103
104
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
105
    return ORJSONResponse(content=error.model_dump(), status_code=error.code)
106
107
108
109
110


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
111
112
113
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
114
115
116
117
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


118
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg, model_path):
119
120
    global chat_template_name

121
122
123
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
124

125
126
127
128
129
130
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
131
132
133
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
134
135
136
            tokenizer_manager.tokenizer.chat_template = chat_template.replace(
                "\\n", "\n"
            )
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
163
164
165
    else:
        chat_template_name = chat_template_arg

166
167
168
169
    # Check chat-template
    # TODO:
    # 1. Do not import any code from sglang.lang
    # 2. For VLM, when chat_template_arg is None, set it automatically by guessing from model_path.
170

171

172
173
174
async def v1_files_create(
    file: UploadFile, purpose: str, file_storage_path: str = None
):
175
176
    try:
        global storage_dir
177
178
        if file_storage_path:
            storage_dir = file_storage_path
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


213
214
215
216
217
218
219
220
221
222
223
224
225
226
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


227
async def v1_batches(tokenizer_manager, raw_request: Request):
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
248
        asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))
249
250
251
252
253
254
255
256
257
258

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


259
async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
283
        request_ids = []
284
        for line_id, line in enumerate(lines):
285
286
287
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
288
            request_ids.append(f"{batch_id}-req_{line_id}")
289
290
291
292
293
294

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

295
296
297
298
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
299

300
301
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
302
                all_requests, tokenizer_manager, request_ids=request_ids
303
304
            )
        elif end_point == "/v1/completions":
305
306
307
308
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

309
        try:
310
            created = int(time.time())
311
            ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
312
313
314
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
315
316
317
                responses = v1_chat_generate_response(
                    request,
                    ret,
318
                    created,
319
                    to_file=True,
320
321
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
                    tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
322
                )
323
            else:
yichuan~'s avatar
yichuan~ committed
324
                responses = v1_generate_response(
325
326
327
328
329
330
                    request,
                    ret,
                    tokenizer_manager,
                    created,
                    to_file=True,
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
yichuan~'s avatar
yichuan~ committed
331
                )
332
333

        except Exception as e:
334
335
            logger.error(f"error: {get_exception_traceback()}")
            responses = []
336
337
338
339
340
341
342
343
344
345
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
346
            # the batch_req here can be changed to be named within a batch granularity
347
348
349
350
351
352
353
354
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
355

356
357
358
359
360
361
362
363
364
365
366
367
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
368
369
370
371
372
373
374
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
375
376
377
378
379
380
381
382
383
384
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
385
        logger.error(f"error: {e}")
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


402
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
403
404
405
406
407
408
409
410
411
412
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
413
                tokenizer_manager=tokenizer_manager,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


430
async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        # Cancel requests by request_ids
446
447
        for line_id in range(len(lines)):
            rid = f"{batch_id}-req_{line_id}"
448
            tokenizer_manager.abort_request(rid=rid)
449
450
451
452
453
454
455
456
457
458
459
460
461

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


482
483
484
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
485
486
487
488
489
490
491
492
493
494
495
    if len(all_requests) > 1:
        first_prompt_type = type(all_requests[0].prompt)
        for request in all_requests:
            assert (
                type(request.prompt) is first_prompt_type
            ), "All prompts must be of the same type in file input settings"
            if request.n > 1:
                raise ValueError(
                    "Parallel sampling is not supported for completions from files"
                )

496
497
    prompts = []
    sampling_params_list = []
498
    return_logprobs = []
499
    logprob_start_lens = []
500
    top_logprobs_nums = []
501
    lora_paths = []
yichuan~'s avatar
yichuan~ committed
502

503
    for request in all_requests:
504
        # NOTE: with openai API, the prompt's logprobs are always not computed
505
        if request.echo and request.logprobs:
506
            logger.warning(
507
                "Echo is not compatible with logprobs. "
508
                "To compute logprobs of input prompt, please use the native /generate API."
509
510
            )

511
512
513
514
515
        prompt = request.prompt
        if is_completion_template_defined():
            prompt = generate_completion_prompt_from_request(request)
        prompts.append(prompt)

516
        lora_paths.append(request.lora_path)
517
518
519
520
        if request.echo and request.logprobs:
            current_logprob_start_len = 0
        else:
            current_logprob_start_len = -1
521
522
523
524
525
526
527
528
        sampling_params_list.append(
            {
                "temperature": request.temperature,
                "max_new_tokens": request.max_tokens,
                "min_new_tokens": request.min_tokens,
                "stop": request.stop,
                "stop_token_ids": request.stop_token_ids,
                "top_p": request.top_p,
529
530
                "top_k": request.top_k,
                "min_p": request.min_p,
531
532
533
534
535
                "presence_penalty": request.presence_penalty,
                "frequency_penalty": request.frequency_penalty,
                "repetition_penalty": request.repetition_penalty,
                "regex": request.regex,
                "json_schema": request.json_schema,
536
                "ebnf": request.ebnf,
537
538
                "n": request.n,
                "no_stop_trim": request.no_stop_trim,
539
540
                "ignore_eos": request.ignore_eos,
                "skip_special_tokens": request.skip_special_tokens,
541
542
            }
        )
543
        return_logprobs.append(request.logprobs is not None)
544
        logprob_start_lens.append(current_logprob_start_len)
545
546
547
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
548
549

    if len(all_requests) == 1:
550
551
552
553
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
            prompt_kwargs = {"text": prompts[0]}
        else:
            prompt_kwargs = {"input_ids": prompts[0]}
554
        sampling_params_list = sampling_params_list[0]
555
        return_logprobs = return_logprobs[0]
556
        logprob_start_lens = logprob_start_lens[0]
557
        top_logprobs_nums = top_logprobs_nums[0]
558
        lora_paths = lora_paths[0]
559
    else:
560
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
561
562
563
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
564

565
    adapted_request = GenerateReqInput(
566
        **prompt_kwargs,
567
        sampling_params=sampling_params_list,
568
569
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
570
        logprob_start_len=logprob_start_lens,
571
        return_text_in_logprobs=True,
572
        stream=all_requests[0].stream,
573
        rid=request_ids,
574
        lora_path=lora_paths,
575
    )
yichuan~'s avatar
yichuan~ committed
576

577
    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
578
579


580
581
582
def v1_generate_response(
    request, ret, tokenizer_manager, created, to_file=False, cache_report=False
):
583
584
585
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
586
    if (not isinstance(request, list)) and request.echo:
587
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
588
589
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
590
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
591
592
593
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
594
                tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
yichuan~'s avatar
yichuan~ committed
595
596
597
598
599
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
600
601
602
                tokenizer_manager.tokenizer.decode(
                    request.prompt, skip_special_tokens=True
                )
yichuan~'s avatar
yichuan~ committed
603
            ]
604
        else:
yichuan~'s avatar
yichuan~ committed
605
            # for the case of single str prompt
606
607
608
609
610
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
611
        if isinstance(request, list) and request[idx].echo:
612
613
            echo = True
            text = request[idx].prompt + text
614
        if echo and not isinstance(request, list):
yichuan~'s avatar
yichuan~ committed
615
616
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
617
618

        logprobs = False
619
        if isinstance(request, list) and request[idx].logprobs is not None:
620
            logprobs = True
621
        elif (not isinstance(request, list)) and request.logprobs is not None:
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

640
641
        finish_reason = ret_item["meta_info"]["finish_reason"]

642
        if to_file:
643
            # to make the choise data json serializable
644
645
646
647
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
648
                "finish_reason": finish_reason["type"] if finish_reason else None,
649
650
651
652
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
653
                ),
654
655
656
657
658
659
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
660
                finish_reason=finish_reason["type"] if finish_reason else None,
661
662
663
664
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
665
                ),
666
667
668
669
670
671
672
673
674
675
676
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
677
                    # remain the same but if needed we can change that
678
679
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
680
                    "created": created,
681
682
683
684
685
686
687
688
689
690
691
692
693
694
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
695
696
697
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
698
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
699
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
700
701
702
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
703
            created=created,
704
705
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
706
                prompt_tokens=prompt_tokens,
707
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
708
                total_tokens=prompt_tokens + completion_tokens,
709
710
711
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
712
713
714
715
716
            ),
        )
    return response


717
async def v1_completions(tokenizer_manager, raw_request: Request):
718
719
    request_json = await raw_request.json()
    all_requests = [CompletionRequest(**request_json)]
720
    created = int(time.time())
721
    adapted_request, request = v1_generate_request(all_requests)
722
723
724
725

    if adapted_request.stream:

        async def generate_stream_resp():
726
727
728
729
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
730
731
            cached_tokens = {}

732
            try:
733
                async for content in tokenizer_manager.generate_request(
734
735
                    adapted_request, raw_request
                ):
736
                    index = content.get("index", 0)
737
738
739
740

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

741
                    text = content["text"]
742
743
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
744
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
745
746
747

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
748
749
750
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
751
752
753
754
755
756
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
757
                                    prompts = tokenizer_manager.tokenizer.decode(
758
759
760
761
762
763
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
764
                                    prompts = tokenizer_manager.tokenizer.decode(
765
766
767
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
768

769
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
770
                            text = prompts + text
771

772
                    if request.logprobs is not None:
773
774
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
775
776
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
777
                            ]
778
779
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
780
781
                            ]
                        else:
782
783
                            input_token_logprobs = None
                            input_top_logprobs = None
784
785

                        logprobs = to_openai_style_logprobs(
786
787
788
789
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
790
                            ][n_prev_token:],
791
792
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
793
                            ][n_prev_token:],
794
                        )
795
                        n_prev_token = len(
796
                            content["meta_info"]["output_token_logprobs"]
797
                        )
798
                    else:
799
                        logprobs = None
800

801
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
802
                    stream_buffer = stream_buffer + delta
803
                    finish_reason = content["meta_info"]["finish_reason"]
804
                    choice_data = CompletionResponseStreamChoice(
805
                        index=index,
806
807
                        text=delta,
                        logprobs=logprobs,
808
                        finish_reason=finish_reason["type"] if finish_reason else None,
809
810
811
812
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
813
                        ),
814
815
816
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
817
                        created=created,
818
819
820
821
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
822
823
824
825

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

826
                    yield f"data: {chunk.model_dump_json()}\n\n"
827
                if request.stream_options and request.stream_options.include_usage:
828
829
830
831
832
833
834
835
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
836
837
838
839
840
841
842
843
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
844
                    usage = UsageInfo(
845
846
847
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
848
                        prompt_tokens_details=prompt_tokens_details,
849
850
851
                    )

                    final_usage_chunk = CompletionStreamResponse(
852
                        id=content["meta_info"]["id"],
853
                        created=created,
854
855
856
857
858
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
859
                        exclude_none=True
860
861
                    )
                    yield f"data: {final_usage_data}\n\n"
862
863
864
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
865
866
            yield "data: [DONE]\n\n"

867
868
869
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
870
            background=tokenizer_manager.create_abort_task(adapted_request),
871
        )
872
873

    # Non-streaming response.
874
    try:
875
        ret = await tokenizer_manager.generate_request(
876
877
            adapted_request, raw_request
        ).__anext__()
878
879
    except ValueError as e:
        return create_error_response(str(e))
880

881
882
883
    if not isinstance(ret, list):
        ret = [ret]

884
885
886
887
888
889
890
    response = v1_generate_response(
        request,
        ret,
        tokenizer_manager,
        created,
        cache_report=tokenizer_manager.server_args.enable_cache_report,
    )
891
    return response
892

893

894
def v1_chat_generate_request(
895
    all_requests: List[ChatCompletionRequest],
896
    tokenizer_manager,
897
    request_ids: List[str] = None,
898
):
899
    input_ids = []
Mick's avatar
Mick committed
900
    prompts = []
901
902
    sampling_params_list = []
    image_data_list = []
Mick's avatar
Mick committed
903
    audio_data_list = []
904
    return_logprobs = []
905
    logprob_start_lens = []
906
    top_logprobs_nums = []
907
    modalities_list = []
908
    lora_paths = []
909
910
911

    # NOTE: with openai API, the prompt's logprobs are always not computed

912
913
914
915
916
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
Mick's avatar
Mick committed
917
        #  - audio_data: None or a list of audio strings (URLs).
918
        #    None skips any image processing in GenerateReqInput.
919
        strict_tag = None
Mick's avatar
Mick committed
920
        prompt = ""
921
922
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
Tanjiro's avatar
Tanjiro committed
923
924
925
926
927
928
929
930
931
932
933
934
            tools = None
            if request.tools and request.tool_choice != "none":
                request.skip_special_tokens = False
                if not isinstance(request.tool_choice, str):
                    tools = [
                        item.function.model_dump()
                        for item in request.tools
                        if item.function.name == request.tool_choice.function.name
                    ]
                else:
                    tools = [item.function.model_dump() for item in request.tools]

935
936
937
938
                tool_call_parser = tokenizer_manager.server_args.tool_call_parser
                parser = FunctionCallParser(request.tools, tool_call_parser)
                strict_tag = parser.get_structure_tag()

939
            if chat_template_name is None:
940
941
942
943
944
945
946
947
948
949
950
951
952
                openai_compatible_messages = []
                for message in request.messages:
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
953
954
955
956
957
                if openai_compatible_messages[-1]["role"] == "assistant":
                    assistant_prefix = openai_compatible_messages[-1]["content"]
                    openai_compatible_messages = openai_compatible_messages[:-1]
                else:
                    assistant_prefix = None
YAMY's avatar
YAMY committed
958
959

                try:
960
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
961
962
963
964
965
966
967
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )
                except:
                    #  This except branch will be triggered when the chosen model
Mick's avatar
Mick committed
968
                    #  has a different tools input format that is not compatible
YAMY's avatar
YAMY committed
969
970
                    #  with openAI's apply_chat_template tool_call format, like Mistral.
                    tools = [t if "function" in t else {"function": t} for t in tools]
971
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
972
973
974
975
976
977
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )

978
                if assistant_prefix:
979
980
981
982
983
                    encoded = tokenizer_manager.tokenizer.encode(assistant_prefix)
                    if (
                        encoded
                        and encoded[0] == tokenizer_manager.tokenizer.bos_token_id
                    ):
984
985
                        encoded = encoded[1:]
                    prompt_ids += encoded
986
987
                if tokenizer_manager.model_config.is_multimodal:
                    prompt = tokenizer_manager.tokenizer.decode(prompt_ids)
988
989
                stop = request.stop
                image_data = None
Mick's avatar
Mick committed
990
                audio_data = None
991
                modalities = []
992
            else:
993
994
995
                conv = generate_chat_conv(request, chat_template_name)
                prompt = conv.get_prompt()
                image_data = conv.image_data
Mick's avatar
Mick committed
996
                audio_data = conv.audio_data
997
                modalities = conv.modalities
998
999
1000
1001
1002
1003
                stop = conv.stop_str or []
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
1004
                prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
1005
        else:
1006
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
1007
            prompt_ids = request.messages
1008
1009
            stop = request.stop
            image_data = None
Mick's avatar
Mick committed
1010
            audio_data = None
1011
            modalities = []
Mick's avatar
Mick committed
1012
            prompt = request.messages
1013
        input_ids.append(prompt_ids)
1014
        return_logprobs.append(request.logprobs)
1015
        logprob_start_lens.append(-1)
1016
        top_logprobs_nums.append(request.top_logprobs or 0)
1017
        lora_paths.append(request.lora_path)
Mick's avatar
Mick committed
1018
        prompts.append(prompt)
1019
1020
1021
1022
1023
1024
1025
1026

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
1027
1028
            "top_k": request.top_k,
            "min_p": request.min_p,
1029
1030
1031
1032
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
1033
            "ebnf": request.ebnf,
1034
            "n": request.n,
1035
            "no_stop_trim": request.no_stop_trim,
1036
            "ignore_eos": request.ignore_eos,
1037
            "skip_special_tokens": request.skip_special_tokens,
1038
        }
1039

1040
1041
1042
1043
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
1044
1045
1046
1047
1048
1049
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

        if strict_tag is not None:
            if (
                sampling_params.get("regex")
                or sampling_params.get("ebnf")
                or sampling_params.get("structural_tag")
                or sampling_params.get("json_schema")
            ):
                logger.warning(
                    "Constrained decoding is not compatible with tool calls."
                )
            else:
                sampling_params["structural_tag"] = convert_json_schema_to_str(
                    strict_tag.model_dump(by_alias=True)
                )

1066
1067
        sampling_params_list.append(sampling_params)

1068
        image_data_list.append(image_data)
Mick's avatar
Mick committed
1069
        audio_data_list.append(audio_data)
1070
        modalities_list.append(modalities)
1071
    if len(all_requests) == 1:
Mick's avatar
Mick committed
1072
1073
1074
        if tokenizer_manager.model_config.is_multimodal:
            # processor will need text input
            prompt_kwargs = {"text": prompts[0]}
yichuan~'s avatar
yichuan~ committed
1075
        else:
Mick's avatar
Mick committed
1076
1077
1078
1079
            if isinstance(input_ids[0], str):
                prompt_kwargs = {"text": input_ids[0]}
            else:
                prompt_kwargs = {"input_ids": input_ids[0]}
1080
        sampling_params_list = sampling_params_list[0]
1081
        image_data_list = image_data_list[0]
Mick's avatar
Mick committed
1082
        audio_data_list = audio_data_list[0]
1083
        return_logprobs = return_logprobs[0]
1084
        logprob_start_lens = logprob_start_lens[0]
1085
        top_logprobs_nums = top_logprobs_nums[0]
1086
        modalities_list = modalities_list[0]
1087
        lora_paths = lora_paths[0]
yichuan~'s avatar
yichuan~ committed
1088
    else:
Mick's avatar
Mick committed
1089
1090
1091
        if tokenizer_manager.model_config.is_multimodal:
            # processor will need text input
            prompt_kwargs = {"text": prompts}
yichuan~'s avatar
yichuan~ committed
1092
        else:
Mick's avatar
Mick committed
1093
1094
1095
1096
            if isinstance(input_ids[0], str):
                prompt_kwargs = {"text": input_ids}
            else:
                prompt_kwargs = {"input_ids": input_ids}
1097

1098
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
1099
        **prompt_kwargs,
1100
        image_data=image_data_list,
Mick's avatar
Mick committed
1101
        audio_data=audio_data_list,
1102
        sampling_params=sampling_params_list,
1103
        return_logprob=return_logprobs,
1104
        logprob_start_len=logprob_start_lens,
1105
1106
1107
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
1108
        rid=request_ids,
1109
        modalities=modalities_list,
1110
        lora_path=lora_paths,
1111
    )
1112
1113

    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
1114

1115

YAMY's avatar
YAMY committed
1116
def v1_chat_generate_response(
Xihuai Wang's avatar
Xihuai Wang committed
1117
1118
    request,
    ret,
1119
    created,
Xihuai Wang's avatar
Xihuai Wang committed
1120
1121
1122
1123
    to_file=False,
    cache_report=False,
    tool_call_parser=None,
    reasoning_parser=None,
YAMY's avatar
YAMY committed
1124
):
1125
1126
1127
    choices = []

    for idx, ret_item in enumerate(ret):
1128
        logprobs = False
yichuan~'s avatar
yichuan~ committed
1129
        if isinstance(request, list) and request[idx].logprobs:
1130
            logprobs = True
yichuan~'s avatar
yichuan~ committed
1131
        elif (not isinstance(request, list)) and request.logprobs:
1132
1133
1134
1135
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
1136
1137
1138
                output_top_logprobs=ret_item["meta_info"].get(
                    "output_top_logprobs", None
                ),
1139
1140
            )
            token_logprobs = []
1141
1142
1143
            for token_idx, (token, logprob) in enumerate(
                zip(logprobs.tokens, logprobs.token_logprobs)
            ):
1144
1145
1146
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
1147
1148
1149
                    for top_token, top_logprob in logprobs.top_logprobs[
                        token_idx
                    ].items():
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1170

1171
1172
        finish_reason = ret_item["meta_info"]["finish_reason"]

Tanjiro's avatar
Tanjiro committed
1173
1174
1175
1176
1177
1178
        tool_calls = None
        text = ret_item["text"]

        if isinstance(request, list):
            tool_choice = request[idx].tool_choice
            tools = request[idx].tools
Xihuai Wang's avatar
Xihuai Wang committed
1179
            separate_reasoning = request[idx].separate_reasoning
Tanjiro's avatar
Tanjiro committed
1180
1181
1182
        else:
            tool_choice = request.tool_choice
            tools = request.tools
Xihuai Wang's avatar
Xihuai Wang committed
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
            separate_reasoning = request.separate_reasoning

        if reasoning_parser and separate_reasoning:
            try:
                parser = ReasoningParser(
                    model_type=reasoning_parser, stream_reasoning=False
                )
                reasoning_text, text = parser.parse_non_stream(text)
            except Exception as e:
                logger.error(f"Exception: {e}")
                return create_error_response(
                    HTTPStatus.BAD_REQUEST,
                    "Failed to parse reasoning related info to json format!",
                )
        else:
            reasoning_text = None
Tanjiro's avatar
Tanjiro committed
1199

1200
1201
1202
1203
1204
1205
1206
        if tool_choice != "none" and tools:
            parser = FunctionCallParser(tools, tool_call_parser)
            if parser.has_tool_call(text):
                if finish_reason["type"] == "stop":
                    finish_reason["type"] = "tool_calls"
                    finish_reason["matched"] = None
                try:
1207
                    text, call_info_list = parser.parse_non_stream(text)
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
                    tool_calls = [
                        ToolCall(
                            id=str(call_info.tool_index),
                            function=FunctionResponse(
                                name=call_info.name, arguments=call_info.parameters
                            ),
                        )
                        for call_info in call_info_list
                    ]
                except Exception as e:
                    logger.error(f"Exception: {e}")
                    return create_error_response(
                        HTTPStatus.BAD_REQUEST,
                        "Failed to parse fc related info to json format!",
Tanjiro's avatar
Tanjiro committed
1222
1223
                    )

1224
        if to_file:
1225
            # to make the choice data json serializable
1226
1227
            choice_data = {
                "index": 0,
Tanjiro's avatar
Tanjiro committed
1228
1229
                "message": {
                    "role": "assistant",
1230
                    "content": text if text else None,
Tanjiro's avatar
Tanjiro committed
1231
                    "tool_calls": tool_calls,
1232
                    "reasoning_content": reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1233
                },
1234
                "logprobs": choice_logprobs.model_dump() if choice_logprobs else None,
1235
                "finish_reason": finish_reason["type"] if finish_reason else None,
1236
1237
1238
1239
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1240
                ),
1241
            }
1242
        else:
1243
1244
            choice_data = ChatCompletionResponseChoice(
                index=idx,
Tanjiro's avatar
Tanjiro committed
1245
1246
                message=ChatMessage(
                    role="assistant",
1247
                    content=text if text else None,
Tanjiro's avatar
Tanjiro committed
1248
                    tool_calls=tool_calls,
1249
                    reasoning_content=reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1250
                ),
1251
                logprobs=choice_logprobs,
1252
                finish_reason=finish_reason["type"] if finish_reason else None,
1253
1254
1255
1256
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1257
                ),
1258
1259
1260
            )

        choices.append(choice_data)
1261

1262
1263
1264
1265
1266
1267
1268
1269
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1270
                    # remain the same but if needed we can change that
1271
1272
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
1273
                    "created": created,
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1287
    else:
1288
1289
1290
1291
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1292
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
1293
1294
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
1295
            created=created,
1296
1297
1298
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1299
1300
1301
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1302
1303
1304
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
1305
1306
1307
            ),
        )
        return response
1308

1309

1310
1311
1312
async def v1_chat_completions(
    tokenizer_manager, raw_request: Request, cache_report=False
):
1313
1314
    request_json = await raw_request.json()
    all_requests = [ChatCompletionRequest(**request_json)]
1315
    created = int(time.time())
1316
    adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
1317
1318

    if adapted_request.stream:
YAMY's avatar
YAMY committed
1319
        parser_dict = {}
Xihuai Wang's avatar
Xihuai Wang committed
1320
        reasoning_parser_dict = {}
1321
1322

        async def generate_stream_resp():
1323
1324
1325
1326
1327
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1328
            cached_tokens = {}
1329
            try:
1330
                async for content in tokenizer_manager.generate_request(
1331
1332
                    adapted_request, raw_request
                ):
1333
                    index = content.get("index", 0)
YAMY's avatar
YAMY committed
1334
                    text = content["text"]
1335
1336
1337
1338
1339
1340
1341

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
1342
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
yichuan~'s avatar
yichuan~ committed
1343
1344
1345
1346
1347
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
1348
1349
1350
                            output_top_logprobs=content["meta_info"].get(
                                "output_top_logprobs", []
                            )[n_prev_token:],
yichuan~'s avatar
yichuan~ committed
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1388
                    finish_reason = content["meta_info"]["finish_reason"]
Xihuai Wang's avatar
Xihuai Wang committed
1389
1390
1391
                    finish_reason_type = (
                        finish_reason["type"] if finish_reason else None
                    )
1392

1393
1394
1395
                    if is_first:
                        # First chunk with role
                        is_first = False
1396
                        delta = DeltaMessage(role="assistant")
1397
                        choice_data = ChatCompletionResponseStreamChoice(
1398
                            index=index,
Xihuai Wang's avatar
Xihuai Wang committed
1399
                            delta=delta,
1400
                            finish_reason=finish_reason_type,
1401
1402
1403
1404
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
1405
                            ),
yichuan~'s avatar
yichuan~ committed
1406
                            logprobs=choice_logprobs,
1407
1408
1409
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
1410
                            created=created,
1411
1412
1413
1414
1415
1416
1417
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
YAMY's avatar
YAMY committed
1418
                    new_stream_buffer = stream_buffer + delta
1419

Xihuai Wang's avatar
Xihuai Wang committed
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
                    if (
                        tokenizer_manager.server_args.reasoning_parser
                        and request.separate_reasoning
                    ):
                        if index not in reasoning_parser_dict:
                            reasoning_parser_dict[index] = ReasoningParser(
                                tokenizer_manager.server_args.reasoning_parser,
                                request.stream_reasoning,
                            )
                        reasoning_parser = reasoning_parser_dict[index]
                        reasoning_text, delta = reasoning_parser.parse_stream_chunk(
                            delta
                        )
                        if reasoning_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1436
1437
1438
1439
1440
                                delta=DeltaMessage(
                                    reasoning_content=(
                                        reasoning_text if reasoning_text else None
                                    )
                                ),
1441
                                finish_reason=finish_reason_type,
Xihuai Wang's avatar
Xihuai Wang committed
1442
1443
1444
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1445
                                created=created,
Xihuai Wang's avatar
Xihuai Wang committed
1446
1447
1448
1449
1450
1451
1452
1453
1454
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                        if (delta and len(delta) == 0) or not delta:
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                            continue

YAMY's avatar
YAMY committed
1455
1456
1457
1458
                    if request.tool_choice != "none" and request.tools:
                        if index not in parser_dict:
                            parser_dict[index] = FunctionCallParser(
                                tools=request.tools,
1459
                                tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
YAMY's avatar
YAMY committed
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
                            )
                        parser = parser_dict[index]

                        # parse_increment => returns (normal_text, calls)
                        normal_text, calls = parser.parse_stream_chunk(delta)

                        # 1) if there's normal_text, output it as normal content
                        if normal_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1470
1471
1472
                                delta=DeltaMessage(
                                    content=normal_text if normal_text else None
                                ),
1473
                                finish_reason=finish_reason_type,
YAMY's avatar
YAMY committed
1474
1475
1476
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1477
                                created=created,
YAMY's avatar
YAMY committed
1478
1479
1480
1481
1482
1483
1484
1485
1486
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"

                        # 2) if we found calls, we output them as separate chunk(s)
                        for call_item in calls:
                            # transform call_item -> FunctionResponse + ToolCall

1487
                            if finish_reason_type == "stop":
YAMY's avatar
YAMY committed
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
                                latest_delta_len = 0
                                if isinstance(call_item.parameters, str):
                                    latest_delta_len = len(call_item.parameters)

                                expected_call = json.dumps(
                                    parser.multi_format_parser.detectors[0]
                                    .prev_tool_call_arr[index]
                                    .get("arguments", {}),
                                    ensure_ascii=False,
                                )
                                actual_call = parser.multi_format_parser.detectors[
                                    0
                                ].streamed_args_for_tool[index]
                                if latest_delta_len > 0:
                                    actual_call = actual_call[:-latest_delta_len]
                                remaining_call = expected_call.replace(
                                    actual_call, "", 1
                                )
                                call_item.parameters = remaining_call

1508
1509
                                finish_reason_type = "tool_calls"

YAMY's avatar
YAMY committed
1510
1511
1512
1513
1514
1515
1516
1517
1518
                            tool_call = ToolCall(
                                id=str(call_item.tool_index),
                                function=FunctionResponse(
                                    name=call_item.name,
                                    arguments=call_item.parameters,
                                ),
                            )
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1519
1520
1521
1522
1523
1524
1525
                                delta=DeltaMessage(tool_calls=[tool_call]),
                                finish_reason=(
                                    None
                                    if request.stream_options
                                    and request.stream_options.include_usage
                                    else finish_reason_type
                                ),  # additional chunk will be return
YAMY's avatar
YAMY committed
1526
1527
1528
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1529
                                created=created,
YAMY's avatar
YAMY committed
1530
1531
1532
1533
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
1534

YAMY's avatar
YAMY committed
1535
1536
1537
1538
1539
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first

                    else:
                        # No tool calls => just treat this as normal text
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
                        if delta or not (
                            request.stream_options
                            and request.stream_options.include_usage
                        ):
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
                                delta=DeltaMessage(content=delta if delta else None),
                                finish_reason=(
                                    None
                                    if request.stream_options
                                    and request.stream_options.include_usage
                                    else finish_reason_type
                                ),
                                matched_stop=(
                                    finish_reason["matched"]
                                    if finish_reason and "matched" in finish_reason
                                    else None
                                ),
                                logprobs=choice_logprobs,
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
                                created=created,
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                if finish_reason_type == "stop" and request.tool_choice != "none":
                    parser = FunctionCallParser(
                        tools=request.tools,
                        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
                    )
                    if parser.has_tool_call(new_stream_buffer):
                        # if the stream ends with empty string after tool calls
                        finish_reason_type = "tool_calls"

1578
                if request.stream_options and request.stream_options.include_usage:
1579
1580
1581
1582
1583
1584
1585
1586
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1587
1588
1589
1590
1591
1592
1593
1594
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
1595
                    usage = UsageInfo(
1596
1597
1598
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1599
                        prompt_tokens_details=prompt_tokens_details,
1600
1601
                    )

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
                else:
                    usage = None
                final_usage_chunk = ChatCompletionStreamResponse(
                    id=content["meta_info"]["id"],
                    created=created,
                    choices=[
                        ChatCompletionResponseStreamChoice(
                            index=index,
                            delta=DeltaMessage(),
                            finish_reason=finish_reason_type,
                        )
                    ],
                    model=request.model,
                    usage=usage,
                )
                yield f"data: {final_usage_chunk.model_dump_json()}\n\n"
1618
1619
1620
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1621
1622
            yield "data: [DONE]\n\n"

1623
1624
1625
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
1626
            background=tokenizer_manager.create_abort_task(adapted_request),
1627
        )
1628
1629

    # Non-streaming response.
1630
    try:
1631
        ret = await tokenizer_manager.generate_request(
1632
1633
            adapted_request, raw_request
        ).__anext__()
1634
1635
    except ValueError as e:
        return create_error_response(str(e))
1636
1637
1638
    if not isinstance(ret, list):
        ret = [ret]

1639
    response = v1_chat_generate_response(
YAMY's avatar
YAMY committed
1640
1641
        request,
        ret,
1642
        created,
1643
1644
        cache_report=tokenizer_manager.server_args.enable_cache_report,
        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
Xihuai Wang's avatar
Xihuai Wang committed
1645
        reasoning_parser=tokenizer_manager.server_args.reasoning_parser,
1646
    )
1647

1648
1649
1650
    return response


1651
def v1_embedding_request(all_requests, tokenizer_manager):
1652
1653
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1654
    first_prompt_type = type(all_requests[0].input)
1655
1656

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1657
        prompt = request.input
1658
        assert (
1659
            type(prompt) is first_prompt_type
1660
1661
1662
1663
1664
1665
1666
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
1667
1668
1669
1670
1671
1672
        elif isinstance(prompt, list) and isinstance(
            prompt[0], MultimodalEmbeddingInput
        ):
            texts = []
            images = []
            for item in prompt:
uylnap's avatar
uylnap committed
1673
1674
                # TODO simply use padding for text, we should use a better way to handle this
                texts.append(item.text if item.text is not None else "padding")
1675
1676
                images.append(item.image if item.image is not None else None)
            generate_prompts = []
uylnap's avatar
uylnap committed
1677
1678
1679
1680
1681
1682
            if chat_template_name is not None:
                convs = generate_embedding_convs(texts, images, chat_template_name)
                for conv in convs:
                    generate_prompts.append(conv.get_prompt())
            else:
                generate_prompts = texts
1683
1684
1685
1686
            if len(generate_prompts) == 1:
                prompt_kwargs = {"text": generate_prompts[0], "image_data": images[0]}
            else:
                prompt_kwargs = {"text": generate_prompts, "image_data": images}
1687
1688
1689
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
Baoyuan Qi's avatar
Baoyuan Qi committed
1690
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
1691
            prompt_kwargs = {"text": prompts}
1692
1693
1694
1695
1696
1697
1698
        elif isinstance(prompts[0], list) and isinstance(
            prompts[0][0], MultimodalEmbeddingInput
        ):
            # TODO: multiple requests
            raise NotImplementedError(
                "Multiple requests with multimodal inputs are not supported yet"
            )
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1711
1712
1713
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1714
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1715
1716
1717
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1718
1719
1720
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1731
1732


1733
async def v1_embeddings(tokenizer_manager, raw_request: Request):
1734
1735
    request_json = await raw_request.json()
    all_requests = [EmbeddingRequest(**request_json)]
1736
    adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)
1737
1738

    try:
1739
        ret = await tokenizer_manager.generate_request(
1740
1741
1742
1743
1744
1745
1746
1747
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

1748
    response = v1_embedding_response(ret, tokenizer_manager.model_path)
1749
1750
1751
1752

    return response


1753
def to_openai_style_logprobs(
1754
1755
1756
1757
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1758
1759
1760
1761
1762
1763
1764
1765
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1766
            # Not supported yet
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1778
1779
1780
1781
1782
1783
1784
1785
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1786

Liangsheng Yin's avatar
Liangsheng Yin committed
1787
    return ret_logprobs