Unverified Commit c17c5781 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Simplify tokenizer manager (#1904)

parent 916b3cdd
......@@ -24,7 +24,6 @@ import zmq
from sglang.srt.managers.io_struct import (
TokenizedEmbeddingReqInput,
TokenizedGenerateReqInput,
TokenizedRewardReqInput,
)
from sglang.srt.managers.scheduler import run_scheduler_process
from sglang.srt.server_args import PortArgs, ServerArgs
......@@ -152,7 +151,6 @@ class DataParallelController:
(
TokenizedGenerateReqInput,
TokenizedEmbeddingReqInput,
TokenizedRewardReqInput,
),
):
self.dispatching(recv_req)
......
......@@ -56,49 +56,47 @@ class GenerateReqInput:
# LoRA related
lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None
# Whether it is a single request or a batch request
is_single: bool = True
def post_init(self):
def normalize_batch_and_arguments(self):
if (self.text is None and self.input_ids is None) or (
self.text is not None and self.input_ids is not None
):
raise ValueError("Either text or input_ids should be provided.")
self.is_single = False
# Derive the batch size
if self.text is not None:
if isinstance(self.text, str):
self.is_single = True
self.batch_size = 1
else:
self.is_single = False
self.batch_size = len(self.text)
else:
if isinstance(self.input_ids[0], int):
self.is_single = True
self.batch_size = 1
else:
self.is_single = False
self.batch_size = len(self.input_ids)
# Handle parallel sampling
# When parallel sampling is used, we always treat the input as a batch.
if self.sampling_params is None:
self.parallel_sample_num = 1
elif isinstance(self.sampling_params, dict):
self.parallel_sample_num = self.sampling_params.get("n", 1)
else: # isinstance(self.sampling_params, list):
self.parallel_sample_num = self.sampling_params[0].get("n", 1)
for sp in self.sampling_params:
# TODO cope with the case that the parallel_sample_num is different for different samples
assert self.parallel_sample_num == sp.get(
"n", 1
), "The parallel_sample_num should be the same for all samples in sample params."
if self.parallel_sample_num > 1:
if self.is_single:
self.is_single = False
if self.text is not None:
self.text = [self.text]
if self.input_ids is not None:
self.input_ids = [self.input_ids]
assert all(self.parallel_sample_num == sampling_params.get("n", 1) for sampling_params in self.sampling_params), (
"The parallel_sample_num should be the same for all samples in sample params.")
if self.parallel_sample_num > 1 and self.is_single:
self.is_single = False
if self.text is not None:
self.text = [self.text]
if self.input_ids is not None:
self.input_ids = [self.input_ids]
# Fill in default arguments
if self.is_single:
if self.sampling_params is None:
self.sampling_params = {}
......@@ -114,8 +112,8 @@ class GenerateReqInput:
if self.parallel_sample_num == 1:
num = self.batch_size
else:
# The first bs samples are used for caching the prefix for parallel sampling
num = self.batch_size + self.parallel_sample_num * self.batch_size
# Expand parallel_sample_num
num = self.batch_size * self.parallel_sample_num
if self.image_data is None:
self.image_data = [None] * num
......@@ -128,14 +126,11 @@ class GenerateReqInput:
self.sampling_params = [{}] * num
elif not isinstance(self.sampling_params, list):
self.sampling_params = [self.sampling_params] * num
else:
assert self.parallel_sample_num == 1
if self.rid is None:
self.rid = [uuid.uuid4().hex for _ in range(num)]
else:
assert isinstance(self.rid, list), "The rid should be a list."
assert self.parallel_sample_num == 1
if self.return_logprob is None:
self.return_logprob = [False] * num
......@@ -158,6 +153,26 @@ class GenerateReqInput:
else:
assert self.parallel_sample_num == 1
def regenerate_rid(self):
self.rid = uuid.uuid4().hex
return self.rid
def __getitem__(self, i):
return GenerateReqInput(
text=self.text[i] if self.text is not None else None,
input_ids=self.input_ids[i] if self.input_ids is not None else None,
image_data=self.image_data[i],
sampling_params=self.sampling_params[i],
rid=self.rid[i],
return_logprob=self.return_logprob[i],
logprob_start_len=self.logprob_start_len[i],
top_logprobs_num=self.top_logprobs_num[i],
return_text_in_logprobs=self.return_text_in_logprobs,
stream=self.stream,
modalities=self.modalities[i] if self.modalities else None,
lora_path=self.lora_path[i] if self.lora_path is not None else None,
)
@dataclass
class TokenizedGenerateReqInput:
......@@ -195,20 +210,29 @@ class EmbeddingReqInput:
# Dummy sampling params for compatibility
sampling_params: Union[List[Dict], Dict] = None
# Whether it is a single request or a batch request
is_single: bool = True
def post_init(self):
def normalize_batch_and_arguments(self):
if (self.text is None and self.input_ids is None) or (
self.text is not None and self.input_ids is not None
):
raise ValueError("Either text or input_ids should be provided.")
# Derive the batch size
if self.text is not None:
self.is_single = isinstance(self.text, str)
if isinstance(self.text, str):
self.is_single = True
self.batch_size = 1
else:
self.is_single = False
self.batch_size = len(self.text)
else:
self.is_single = isinstance(self.input_ids[0], int)
if isinstance(self.input_ids[0], int):
self.is_single = True
self.batch_size = 1
else:
self.is_single = False
self.batch_size = len(self.input_ids)
# Fill in default arguments
if self.is_single:
if self.rid is None:
self.rid = uuid.uuid4().hex
......@@ -216,73 +240,31 @@ class EmbeddingReqInput:
self.sampling_params = {}
self.sampling_params["max_new_tokens"] = 1
else:
# support select operation
self.batch_size = (
len(self.text) if self.text is not None else len(self.input_ids)
)
if self.rid is None:
self.rid = [uuid.uuid4().hex for _ in range(self.batch_size)]
else:
if not isinstance(self.rid, list):
raise ValueError("The rid should be a list.")
assert isinstance(self.rid, list), "The rid should be a list."
if self.sampling_params is None:
self.sampling_params = [{}] * self.batch_size
for i in range(self.batch_size):
self.sampling_params[i]["max_new_tokens"] = 1
def regenerate_rid(self):
self.rid = uuid.uuid4().hex
return self.rid
@dataclass
class TokenizedEmbeddingReqInput:
# The request id
rid: str
# The input text
input_text: str
# The input token ids
input_ids: List[int]
# Dummy sampling params for compatibility
sampling_params: SamplingParams
RewardReqConv = Union[List[List[Dict]], List[Dict], str, List[str]]
@dataclass
class RewardReqInput:
# The input prompt. It can be a single prompt or a batch of prompts. Can be either chat format or a string.
conv: RewardReqConv
# The request id.
rid: Optional[Union[List[str], str]] = None
# Dummy sampling params for compatibility
sampling_params: Union[List[Dict], Dict] = None
# Whether it is a single request or a batch request
is_single: bool = True
def post_init(self):
self.is_single = isinstance(self.conv[0], dict)
if self.is_single:
if self.rid is None:
self.rid = uuid.uuid4().hex
if self.sampling_params is None:
self.sampling_params = {}
self.sampling_params["max_new_tokens"] = 1
else:
# support select operation
self.batch_size = len(self.conv)
if self.rid is None:
self.rid = [uuid.uuid4().hex for _ in range(self.batch_size)]
else:
if not isinstance(self.rid, list):
raise ValueError("The rid should be a list.")
if self.sampling_params is None:
self.sampling_params = [{}] * self.batch_size
for i in range(self.batch_size):
self.sampling_params[i]["max_new_tokens"] = 1
def __getitem__(self, i):
return EmbeddingReqInput(
text=self.text[i] if self.text is not None else None,
input_ids=self.input_ids[i] if self.input_ids is not None else None,
sampling_params=self.sampling_params[i],
rid=self.rid[i],
)
@dataclass
class TokenizedRewardReqInput:
class TokenizedEmbeddingReqInput:
# The request id
rid: str
# The input text
......
......@@ -43,7 +43,6 @@ from sglang.srt.managers.io_struct import (
ProfileReq,
TokenizedEmbeddingReqInput,
TokenizedGenerateReqInput,
TokenizedRewardReqInput,
UpdateWeightReqInput,
UpdateWeightReqOutput,
)
......@@ -394,9 +393,7 @@ class Scheduler:
for recv_req in recv_reqs:
if isinstance(recv_req, TokenizedGenerateReqInput):
self.handle_generate_request(recv_req)
elif isinstance(
recv_req, (TokenizedEmbeddingReqInput, TokenizedRewardReqInput)
):
elif isinstance(recv_req, TokenizedEmbeddingReqInput):
self.handle_embedding_request(recv_req)
elif isinstance(recv_req, FlushCacheReq):
self.flush_cache()
......@@ -487,7 +484,7 @@ class Scheduler:
def handle_embedding_request(
self,
recv_req: Union[TokenizedEmbeddingReqInput, TokenizedRewardReqInput],
recv_req: TokenizedEmbeddingReqInput,
):
req = Req(
recv_req.rid,
......
......@@ -16,6 +16,7 @@ limitations under the License.
"""TokenizerManager is a process that tokenizes the text."""
import asyncio
import copy
import dataclasses
import json
import logging
......@@ -51,11 +52,8 @@ from sglang.srt.managers.io_struct import (
GetMemPoolSizeReq,
GetMemPoolSizeReqOutput,
ProfileReq,
RewardReqConv,
RewardReqInput,
TokenizedEmbeddingReqInput,
TokenizedGenerateReqInput,
TokenizedRewardReqInput,
UpdateWeightReqInput,
UpdateWeightReqOutput,
)
......@@ -157,7 +155,7 @@ class TokenizerManager:
async def generate_request(
self,
obj: Union[GenerateReqInput, EmbeddingReqInput, RewardReqInput],
obj: Union[GenerateReqInput, EmbeddingReqInput],
request: Optional[fastapi.Request] = None,
):
if self.to_create_loop:
......@@ -172,122 +170,54 @@ class TokenizerManager:
"Please add `--is-embedding` when launching the server or try another model."
)
obj.post_init()
obj.normalize_batch_and_arguments()
is_single = obj.is_single
if is_single:
async for response in self._handle_single_request(obj, request):
tokenized_obj = await self._tokenize_one_request(obj)
self.send_to_scheduler.send_pyobj(tokenized_obj)
async for response in self._wait_one_response(obj, request):
yield response
else:
async for response in self._handle_batch_request(obj, request):
yield response
async def _send_single_request(
async def _tokenize_one_request(
self,
obj: Union[GenerateReqInput, EmbeddingReqInput, RewardReqInput],
index: Optional[int] = None,
input_id_index: Optional[int] = None,
is_cache_for_prefill: Optional[bool] = False,
obj: Union[GenerateReqInput, EmbeddingReqInput],
):
if not is_cache_for_prefill: # The normal case with a single prompt
if index is None:
rid = obj.rid
if isinstance(obj, RewardReqInput):
input_text = self._apply_chat_template(obj.conv)
input_ids = self.tokenizer.encode(input_text)
elif obj.input_ids is None:
input_text = obj.text
input_ids = self.tokenizer.encode(input_text)
else:
input_text = obj.text if obj.text is not None else None
input_ids = obj.input_ids
sampling_params = self._get_sampling_params(obj.sampling_params)
if self.is_generation:
image_inputs = await self.image_processor.process_images_async(
obj.image_data, input_text or input_ids, obj
)
if image_inputs and "input_ids" in image_inputs:
input_ids = image_inputs["input_ids"]
return_logprob = obj.return_logprob
logprob_start_len = obj.logprob_start_len
top_logprobs_num = obj.top_logprobs_num
else:
rid = obj.rid[index]
if isinstance(obj, RewardReqInput):
input_text = self._apply_chat_template(obj.conv[input_id_index])
input_ids = self.tokenizer.encode(input_text)
elif obj.input_ids is None:
input_text = obj.text[input_id_index]
input_ids = self.tokenizer.encode(input_text)
else:
input_text = (
obj.text[input_id_index] if obj.text is not None else None
)
input_ids = obj.input_ids[input_id_index]
sampling_params = self._get_sampling_params(obj.sampling_params[index])
if self.is_generation:
image_inputs = await self.image_processor.process_images_async(
obj.image_data[index], input_text or input_ids, obj
)
if image_inputs and "input_ids" in image_inputs:
input_ids = image_inputs["input_ids"]
return_logprob = obj.return_logprob[index]
logprob_start_len = obj.logprob_start_len[index]
top_logprobs_num = obj.top_logprobs_num[index]
self._validate_input_length(input_ids)
else: # A prefill request to cache the common prompt for parallel sampling
assert self.is_generation
if obj.text is not None:
if isinstance(obj.text, list):
input_text = obj.text[input_id_index]
rid = obj.rid[index]
else:
input_text = obj.text
rid = obj.rid[0]
if self.tokenizer is not None:
input_ids = self.tokenizer.encode(input_text)
else:
assert obj.input_ids is not None
input_ids = obj.input_ids
if isinstance(obj.input_ids, list) and isinstance(
obj.input_ids[0], list
):
# when obj["input_ids"] is List[List[int]]
input_ids = obj.input_ids[input_id_index]
rid = obj.rid[index]
else:
input_ids = obj.input_ids
rid = obj.rid[0]
else:
input_text = None
if isinstance(obj.input_ids, list) and isinstance(
obj.input_ids[0], list
):
# when obj["input_ids"] is List[List[int]]
input_ids = obj.input_ids[input_id_index]
rid = obj.rid[index]
else:
input_ids = obj.input_ids
rid = obj.rid[0]
"""Tokenize one request."""
# Tokenize
input_text = obj.text
if obj.input_ids is None:
input_ids = self.tokenizer.encode(input_text)
else:
input_ids = obj.input_ids
sampling_params = SamplingParams(**obj.sampling_params[0])
sampling_params.max_new_tokens = 0
if self.is_generation:
image_inputs = await self.image_processor.process_images_async(
obj.image_data[0], input_text or input_ids, obj
obj.image_data, input_text or input_ids, obj
)
if image_inputs and "input_ids" in image_inputs:
input_ids = image_inputs["input_ids"]
return_logprob = obj.return_logprob[0]
logprob_start_len = obj.logprob_start_len[0]
top_logprobs_num = obj.top_logprobs_num[0]
return_logprob = obj.return_logprob
logprob_start_len = obj.logprob_start_len
top_logprobs_num = obj.top_logprobs_num
# Send to the controller
if self.is_generation:
if len(input_ids) >= self.context_len:
raise ValueError(
f"The input ({len(input_ids)} tokens) is longer than the "
f"model's context length ({self.context_len} tokens)."
)
# Parse sampling parameters
sampling_params = SamplingParams(**obj.sampling_params)
sampling_params.normalize(self.tokenizer)
sampling_params.verify()
# Build return object
if isinstance(obj, GenerateReqInput):
tokenized_obj = TokenizedGenerateReqInput(
rid,
obj.rid,
input_text,
input_ids,
image_inputs,
......@@ -296,219 +226,126 @@ class TokenizerManager:
logprob_start_len,
top_logprobs_num,
obj.stream,
(
obj.lora_path[input_id_index]
if isinstance(obj.lora_path, list)
else obj.lora_path
),
obj.lora_path
)
elif isinstance(obj, EmbeddingReqInput):
tokenized_obj = TokenizedEmbeddingReqInput(
rid,
input_text,
input_ids,
sampling_params,
)
else:
assert isinstance(obj, RewardReqInput)
tokenized_obj = TokenizedRewardReqInput(
rid,
obj.rid,
input_text,
input_ids,
sampling_params,
)
self.send_to_scheduler.send_pyobj(tokenized_obj)
return rid, input_ids
return tokenized_obj
async def _handle_single_request(
async def _wait_one_response(
self,
obj: Union[GenerateReqInput, EmbeddingReqInput, RewardReqInput],
obj: Union[GenerateReqInput, EmbeddingReqInput],
request: Optional[fastapi.Request] = None,
index: Optional[int] = None,
input_id_index: Optional[int] = None,
is_cache_for_prefill: Optional[bool] = False,
):
rid, input_ids = await self._send_single_request(
obj,
index,
input_id_index=input_id_index,
is_cache_for_prefill=is_cache_for_prefill,
)
# Recv results
"""Wait for the response of one request."""
event = asyncio.Event()
state = ReqState([], False, event)
self.rid_to_state[rid] = state
if not is_cache_for_prefill:
async for response in self._wait_for_response(state, obj, rid, request):
yield response
else:
await state.event.wait()
assert state.finished
del self.rid_to_state[rid]
yield input_ids
async def _handle_batch_request(
self,
obj: Union[GenerateReqInput, EmbeddingReqInput, RewardReqInput],
request: Optional[fastapi.Request] = None,
):
batch_size = obj.batch_size
if self.is_generation:
parallel_sample_num = obj.parallel_sample_num
if parallel_sample_num != 1:
# Send prefill requests to cache the common prefix
parallel_sample_num += 1
input_id_result = [] if obj.input_ids is None else None
for i in range(batch_size):
async for input_id in self._handle_single_request(
obj,
request,
index=i,
input_id_index=i,
is_cache_for_prefill=True,
):
if input_id_result is not None:
input_id_result.append(input_id)
if input_id_result is not None:
obj.input_ids = input_id_result
else:
parallel_sample_num = 1
# First send out all requests
generators = []
for i in range(batch_size):
for j in range(parallel_sample_num):
if j == 0 and parallel_sample_num != 1:
continue
index = i * parallel_sample_num + j
if parallel_sample_num != 1:
# Here when using parallel sampling we should consider prefill stage so the index is : j + i * (parallel_sample_num-1) + batch_size - 1
index += batch_size - 1 - i
self.rid_to_state[obj.rid] = state
rid, _ = await self._send_single_request(
obj, index, input_id_index=i, is_cache_for_prefill=False
)
event = asyncio.Event()
state = ReqState([], False, event)
self.rid_to_state[rid] = state
generators.append(
self._wait_for_response(
state,
obj,
rid,
request,
index=index,
response_index=len(generators),
)
)
# Then process the responses based on streaming option
is_stream = hasattr(obj, "stream") and obj.stream
tasks = [asyncio.create_task(gen.__anext__()) for gen in generators]
output_list = [None] * len(tasks)
# Fetch results
while tasks:
done, _ = await asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED)
for task in done:
cur_index = tasks.index(task)
try:
result = task.result()
if is_stream:
yield result
else:
output_list[result["index"]] = result
tasks[cur_index] = asyncio.create_task(
generators[cur_index].__anext__()
)
except StopAsyncIteration:
del generators[cur_index]
del tasks[cur_index]
if not is_stream:
yield output_list
def _validate_input_length(self, input_ids: List[int]):
if len(input_ids) >= self.context_len:
raise ValueError(
f"The input ({len(input_ids)} tokens) is longer than the "
f"model's context length ({self.context_len} tokens)."
)
def _get_sampling_params(self, sampling_params_data: dict):
sampling_params = SamplingParams(**sampling_params_data)
if sampling_params.max_new_tokens != 0:
sampling_params.normalize(self.tokenizer)
sampling_params.verify()
return sampling_params
def _apply_chat_template(self, conv: RewardReqConv) -> Union[str, List[str]]:
if isinstance(conv, str):
return conv
elif isinstance(conv, list):
if isinstance(conv[0], str):
return conv
else:
return self.tokenizer.apply_chat_template(conv, tokenize=False)
async def _wait_for_response(
self,
state: ReqState,
obj: Union[GenerateReqInput, EmbeddingReqInput, RewardReqInput],
rid: str,
request: Optional[fastapi.Request] = None,
index: Optional[int] = None,
response_index: int = 0,
):
while True:
try:
await asyncio.wait_for(state.event.wait(), timeout=4)
except asyncio.TimeoutError:
if request is not None and await request.is_disconnected():
for rid in [obj.rid] if obj.is_single else obj.rid:
self.abort_request(rid)
raise ValueError(f"Abort request {rid}")
self.abort_request(obj.rid)
raise ValueError(f"Abort request {obj.rid}")
continue
if self.is_generation:
if isinstance(obj, GenerateReqInput):
out = self.convert_logprob_style(
state.out_list[-1],
obj.return_logprob if index is None else obj.return_logprob[index],
(
obj.top_logprobs_num
if index is None
else obj.top_logprobs_num[index]
),
obj.return_logprob,
obj.top_logprobs_num,
obj.return_text_in_logprobs,
)
else: # isinstance(obj, (EmbeddingReqInput, RewardReqInput))
else: # isinstance(obj, (EmbeddingReqInput,))
out = state.out_list[-1]
out["index"] = response_index
state.out_list = []
if state.finished:
# Log requests
if self.server_args.log_requests:
# Log requests
logger.info(f"in={obj}, out={out}")
del self.rid_to_state[rid]
del self.rid_to_state[obj.rid]
yield out
break
state.event.clear()
yield out
async def _handle_batch_request(
self,
obj: Union[GenerateReqInput, EmbeddingReqInput],
request: Optional[fastapi.Request] = None,
):
batch_size = obj.batch_size
generators = []
rids = []
if getattr(obj, "parallel_sample_num", 1) == 1:
# Send all requests
for i in range(batch_size):
tmp_obj = obj[i]
tokenized_obj = await self._tokenize_one_request(tmp_obj)
self.send_to_scheduler.send_pyobj(tokenized_obj)
generators.append(self._wait_one_response(tmp_obj, request))
rids.append(tmp_obj.rid)
else:
# FIXME: When using batch and parallel_sample_num together, the perf is not optimal.
# Tokenize all requests
objs = [obj[i] for i in range(batch_size)]
tokenized_objs = await asyncio.gather(*(self._tokenize_one_request(obj) for obj in objs))
# Cache the common prefix for parallel sampling
for i in range(batch_size):
tmp_obj = copy.copy(objs[i])
tokenized_obj = copy.copy(tokenized_objs[i])
tokenized_obj.rid = tmp_obj.regenerate_rid()
tokenized_obj.sampling_params = copy.copy(tokenized_obj.sampling_params)
tokenized_obj.sampling_params.max_new_tokens = 0
tokenized_obj.stream = False
self.send_to_scheduler.send_pyobj(tokenized_obj)
await self._wait_one_response(tmp_obj, request).__anext__()
# Expand requests, assign new rids for them, and send them
for i in range(batch_size):
for _ in range(obj.parallel_sample_num):
tmp_obj = copy.copy(objs[i])
tokenized_obj = copy.copy(tokenized_objs[i])
tokenized_obj.rid = tmp_obj.regenerate_rid()
self.send_to_scheduler.send_pyobj(tokenized_obj)
generators.append(self._wait_one_response(tmp_obj, request))
rids.append(tmp_obj.rid)
# Wait for all requests
is_stream = hasattr(obj, "stream") and obj.stream
if not is_stream:
outputs = await asyncio.gather(*(gen.__anext__() for gen in generators))
yield outputs
else:
rid_to_index = {rid: i for i, rid in enumerate(rids)}
task_map = {asyncio.create_task(gen.__anext__()): gen for gen in generators}
while task_map:
done, _ = await asyncio.wait(task_map.keys(), return_when=asyncio.FIRST_COMPLETED)
for task in done:
gen = task_map.pop(task)
try:
result = task.result()
result["index"] = rid_to_index[result["meta_info"]["id"]]
yield result
new_task = asyncio.create_task(gen.__anext__())
task_map[new_task] = gen
except StopAsyncIteration:
pass
def flush_cache(self):
req = FlushCacheReq()
self.send_to_scheduler.send_pyobj(req)
......
......@@ -71,6 +71,7 @@ from sglang.srt.openai_api.protocol import (
TopLogprob,
UsageInfo,
)
from sglang.utils import get_exception_traceback
logger = logging.getLogger(__name__)
......@@ -314,6 +315,8 @@ async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRe
)
except Exception as e:
logger.error(f"error: {get_exception_traceback()}")
responses = []
error_json = {
"id": f"batch_req_{uuid.uuid4()}",
"custom_id": request_data.get("custom_id"),
......@@ -363,7 +366,7 @@ async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRe
}
except Exception as e:
logger.error("error in SGLang:", e)
logger.error(f"error: {e}")
# Update batch status to "failed"
retrieve_batch = batch_storage[batch_id]
retrieve_batch.status = "failed"
......@@ -469,80 +472,67 @@ async def v1_retrieve_file_content(file_id: str):
def v1_generate_request(
all_requests: List[CompletionRequest], request_ids: List[str] = None
):
if len(all_requests) > 1:
first_prompt_type = type(all_requests[0].prompt)
for request in all_requests:
assert (
type(request.prompt) is first_prompt_type
), "All prompts must be of the same type in file input settings"
if request.n > 1:
raise ValueError(
"Parallel sampling is not supported for completions from files"
)
prompts = []
sampling_params_list = []
return_logprobs = []
logprob_start_lens = []
top_logprobs_nums = []
# NOTE: with openai API, the prompt's logprobs are always not computed
first_prompt_type = type(all_requests[0].prompt)
for request in all_requests:
assert (
type(request.prompt) is first_prompt_type
), "All prompts must be of the same type in file input settings"
if len(all_requests) > 1 and request.n > 1:
raise ValueError(
"Parallel sampling is not supported for completions from files"
)
# NOTE: with openai API, the prompt's logprobs are always not computed
if request.echo and request.logprobs:
logger.warning(
"Echo is not compatible with logprobs. "
"To compute logprobs of input prompt, please use SGLang /request API."
"To compute logprobs of input prompt, please use the native /generate API."
)
for request in all_requests:
prompts.append(request.prompt)
sampling_params_list.append(
{
"temperature": request.temperature,
"max_new_tokens": request.max_tokens,
"min_new_tokens": request.min_tokens,
"stop": request.stop,
"stop_token_ids": request.stop_token_ids,
"top_p": request.top_p,
"presence_penalty": request.presence_penalty,
"frequency_penalty": request.frequency_penalty,
"repetition_penalty": request.repetition_penalty,
"regex": request.regex,
"json_schema": request.json_schema,
"n": request.n,
"ignore_eos": request.ignore_eos,
"no_stop_trim": request.no_stop_trim,
}
)
return_logprobs.append(request.logprobs is not None and request.logprobs > 0)
logprob_start_lens.append(-1)
top_logprobs_nums.append(
request.logprobs if request.logprobs is not None else 0
)
sampling_params = []
if isinstance(request.no_stop_trim, list):
num_reqs = len(request.prompt)
else:
num_reqs = 1
for i in range(num_reqs):
sampling_params.append(
{
"temperature": request.temperature,
"max_new_tokens": request.max_tokens,
"min_new_tokens": request.min_tokens,
"stop": request.stop,
"stop_token_ids": request.stop_token_ids,
"top_p": request.top_p,
"presence_penalty": request.presence_penalty,
"frequency_penalty": request.frequency_penalty,
"repetition_penalty": request.repetition_penalty,
"regex": request.regex,
"json_schema": request.json_schema,
"n": request.n,
"ignore_eos": request.ignore_eos,
"no_stop_trim": (
request.no_stop_trim
if not isinstance(request.no_stop_trim, list)
else request.no_stop_trim[i]
),
}
)
if num_reqs == 1:
sampling_params_list.append(sampling_params[0])
else:
sampling_params_list.append(sampling_params)
if len(all_requests) == 1:
prompt = prompts[0]
if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
prompt_kwargs = {"text": prompts[0]}
else:
prompt_kwargs = {"input_ids": prompts[0]}
sampling_params_list = sampling_params_list[0]
logprob_start_lens = logprob_start_lens[0]
return_logprobs = return_logprobs[0]
logprob_start_lens = logprob_start_lens[0]
top_logprobs_nums = top_logprobs_nums[0]
if isinstance(prompt, str) or isinstance(prompt[0], str):
prompt_kwargs = {"text": prompt}
else:
prompt_kwargs = {"input_ids": prompt}
else:
if isinstance(prompts[0], str):
if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
prompt_kwargs = {"text": prompts}
else:
prompt_kwargs = {"input_ids": prompts}
......@@ -558,9 +548,7 @@ def v1_generate_request(
rid=request_ids,
)
if len(all_requests) == 1:
return adapted_request, all_requests[0]
return adapted_request, all_requests
return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
def v1_generate_response(request, ret, tokenizer_manager, to_file=False):
......@@ -595,7 +583,7 @@ def v1_generate_response(request, ret, tokenizer_manager, to_file=False):
if isinstance(request, list) and request[idx].echo:
echo = True
text = request[idx].prompt + text
if (not isinstance(request, list)) and echo:
if echo and not isinstance(request, list):
prompt_index = idx // request.n
text = prompts[prompt_index] + text
......@@ -709,7 +697,7 @@ async def v1_completions(tokenizer_manager, raw_request: Request):
async for content in tokenizer_manager.generate_request(
adapted_request, raw_request
):
index = content["index"]
index = content.get("index", 0)
stream_buffer = stream_buffers.get(index, "")
n_prev_token = n_prev_tokens.get(index, 0)
......@@ -945,19 +933,18 @@ def v1_chat_generate_request(
sampling_params_list.append(sampling_params)
image_data_list.append(image_data)
modalities_list.extend(modalities)
modalities_list.append(modalities)
if len(all_requests) == 1:
input_ids = input_ids[0]
if isinstance(input_ids, str):
prompt_kwargs = {"text": input_ids}
if isinstance(input_ids[0], str):
prompt_kwargs = {"text": input_ids[0]}
else:
prompt_kwargs = {"input_ids": input_ids}
prompt_kwargs = {"input_ids": input_ids[0]}
sampling_params_list = sampling_params_list[0]
image_data_list = image_data_list[0]
return_logprobs = return_logprobs[0]
logprob_start_lens = logprob_start_lens[0]
top_logprobs_nums = top_logprobs_nums[0]
modalities_list = modalities_list[:1]
modalities_list = modalities_list[0]
else:
if isinstance(input_ids[0], str):
prompt_kwargs = {"text": input_ids}
......@@ -976,9 +963,8 @@ def v1_chat_generate_request(
rid=request_ids,
modalities=modalities_list,
)
if len(all_requests) == 1:
return adapted_request, all_requests[0]
return adapted_request, all_requests
return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
def v1_chat_generate_response(request, ret, to_file=False, cache_report=False):
......@@ -1116,7 +1102,7 @@ async def v1_chat_completions(tokenizer_manager, raw_request: Request):
async for content in tokenizer_manager.generate_request(
adapted_request, raw_request
):
index = content["index"]
index = content.get("index", 0)
is_first = is_firsts.get(index, True)
stream_buffer = stream_buffers.get(index, "")
......
......@@ -53,7 +53,6 @@ from sglang.srt.managers.detokenizer_manager import run_detokenizer_process
from sglang.srt.managers.io_struct import (
EmbeddingReqInput,
GenerateReqInput,
RewardReqInput,
UpdateWeightReqInput,
)
from sglang.srt.managers.scheduler import run_scheduler_process
......@@ -91,7 +90,7 @@ asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
app = FastAPI()
tokenizer_manager = None
tokenizer_manager: TokenizerManager = None
app.add_middleware(
CORSMiddleware,
......@@ -254,7 +253,7 @@ app.post("/encode")(encode_request)
app.put("/encode")(encode_request)
async def judge_request(obj: RewardReqInput, request: Request):
async def judge_request(obj: EmbeddingReqInput, request: Request):
"""Handle a reward model request."""
try:
ret = await tokenizer_manager.generate_request(obj, request).__anext__()
......
......@@ -8,7 +8,7 @@ suites = {
"models/test_embedding_models.py",
"models/test_generation_models.py",
"models/test_lora.py",
"models/test_reward_models.py",
# "models/test_reward_models.py",
"sampling/penaltylib",
"test_chunked_prefill.py",
"test_double_sparsity.py",
......
"""
python3 -m unittest test_openai_server.TestOpenAIServer.test_batch
python3 -m unittest test_openai_server.TestOpenAIServer.test_completion
"""
import json
import time
import unittest
......
"""
python3 -m unittest test_skip_tokenizer_init.TestSkipTokenizerInit.test_parallel_sample
"""
import json
import unittest
......
"""
python3 -m unittest test_srt_endpoint.TestSRTEndpoint.test_simple_decode
python3 -m unittest test_srt_endpoint.TestSRTEndpoint.test_parallel_sample
"""
import json
......@@ -36,11 +37,17 @@ class TestSRTEndpoint(unittest.TestCase):
return_text=False,
n=1,
stream=False,
batch=False,
):
if batch:
text = ["The capital of France is"]
else:
text = "The capital of France is"
response = requests.post(
self.base_url + "/generate",
json={
"text": "The capital of France is",
"text": text,
"sampling_params": {
"temperature": 0 if n == 1 else 0.5,
"max_new_tokens": 16,
......@@ -67,6 +74,9 @@ class TestSRTEndpoint(unittest.TestCase):
def test_simple_decode(self):
self.run_decode()
def test_simple_decode_batch(self):
self.run_decode(batch=True)
def test_parallel_sample(self):
self.run_decode(n=3)
......
"""
Usage:
python3 -m unittest test_vision_openai_server.TestOpenAIVisionServer.test_mixed_batch
python3 -m unittest test_vision_openai_server.TestOpenAIVisionServer.test_multi_images_chat_completion
"""
import base64
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment