adapter.py 51.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
17

18
import asyncio
19
import json
20
import logging
21
import os
22
23
import time
import uuid
24
from http import HTTPStatus
25
from typing import Dict, List
26

27
from fastapi import HTTPException, Request, UploadFile
28
from fastapi.responses import JSONResponse, StreamingResponse
29
from pydantic import ValidationError
30

31
32
33
34
35
36
37
try:
    from outlines.fsm.json_schema import convert_json_schema_to_str
except ImportError:
    # Before outlines 0.0.47, convert_json_schema_to_str is under
    # outlines.integrations.utils
    from outlines.integrations.utils import convert_json_schema_to_str

38
39
40
41
42
43
44
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
    register_conv_template,
)
Ying Sheng's avatar
Ying Sheng committed
45
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
46
from sglang.srt.openai_api.protocol import (
47
48
    BatchRequest,
    BatchResponse,
49
50
51
52
53
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
54
    ChatCompletionTokenLogprob,
55
    ChatMessage,
56
    ChoiceLogprobs,
57
58
59
60
61
62
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
63
    EmbeddingObject,
64
65
    EmbeddingRequest,
    EmbeddingResponse,
66
    ErrorResponse,
67
    FileDeleteResponse,
68
69
    FileRequest,
    FileResponse,
70
    LogProbs,
71
    TopLogprob,
72
73
74
    UsageInfo,
)

75
76
logger = logging.getLogger(__name__)

77
78
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
79

80
81
82
83
84
85
86
87
88
89
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
90
# map file id to file path in SGLang backend
91
92
93
94
95
96
97
file_id_storage: Dict[str, str] = {}


# backend storage directory
storage_dir = None


98
99
100
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
101
102
103
104
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
    return JSONResponse(content=error.model_dump(), status_code=error.code)
105
106
107
108
109


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
110
111
112
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
113
114
115
116
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


117
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg):
118
119
    global chat_template_name

120
121
122
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
123
124
125
126
127
128
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
129
130
131
132
133
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
            tokenizer_manager.tokenizer.chat_template = chat_template.replace(
                "\\n", "\n"
134
            )
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
161
162
163
164
    else:
        chat_template_name = chat_template_arg


165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
async def v1_files_create(file: UploadFile, purpose: str, file_storage_pth: str = None):
    try:
        global storage_dir
        if file_storage_pth:
            storage_dir = file_storage_pth
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


204
205
206
207
208
209
210
211
212
213
214
215
216
217
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
async def v1_batches(tokenizer_manager, raw_request: Request):
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
        asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
274
        request_ids = []
275
276
277
278
        for line in lines:
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
279
            request_ids.append(request_data["custom_id"])
280
281
282
283
284
285

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

286
287
288
289
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
290

291
292
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
293
                all_requests, tokenizer_manager, request_ids=request_ids
294
295
            )
        elif end_point == "/v1/completions":
296
297
298
299
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

300
301
302
303
304
        try:
            ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
305
306
307
308
309
310
                responses = v1_chat_generate_response(
                    request,
                    ret,
                    to_file=True,
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
                )
311
            else:
yichuan~'s avatar
yichuan~ committed
312
313
314
                responses = v1_generate_response(
                    request, ret, tokenizer_manager, to_file=True
                )
315
316
317
318
319
320
321
322
323
324
325
326

        except Exception as e:
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
327
            # the batch_req here can be changed to be named within a batch granularity
328
329
330
331
332
333
334
335
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
336

337
338
339
340
341
342
343
344
345
346
347
348
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
349
350
351
352
353
354
355
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
356
357
358
359
360
361
362
363
364
365
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
366
        logger.error("error in SGLang:", e)
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
                tokenizer_manager=tokenizer_manager,
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        file_request_list = []
        request_ids = []
        for line in lines:
            request_data = json.loads(line)
            file_request_list.append(request_data)
            request_ids.append(request_data["custom_id"])

        # Cancel requests by request_ids
        for rid in request_ids:
            tokenizer_manager.abort_request(rid=rid)

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


469
470
471
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
472
473
    prompts = []
    sampling_params_list = []
474
    return_logprobs = []
475
    logprob_start_lens = []
476
    top_logprobs_nums = []
yichuan~'s avatar
yichuan~ committed
477

478
479
    # NOTE: with openai API, the prompt's logprobs are always not computed
    first_prompt_type = type(all_requests[0].prompt)
480
481
    for request in all_requests:
        assert (
482
            type(request.prompt) is first_prompt_type
483
        ), "All prompts must be of the same type in file input settings"
484
485
486
487
488
        if len(all_requests) > 1 and request.n > 1:
            raise ValueError(
                "Parallel sampling is not supported for completions from files"
            )
        if request.echo and request.logprobs:
489
            logger.warning(
490
491
492
493
494
495
                "Echo is not compatible with logprobs. "
                "To compute logprobs of input prompt, please use SGLang /request API."
            )

    for request in all_requests:
        prompts.append(request.prompt)
496
        return_logprobs.append(request.logprobs is not None and request.logprobs > 0)
497
        logprob_start_lens.append(-1)
498
499
500
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
501
        sampling_params = []
502
        if isinstance(request.no_stop_trim, list):
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
            num_reqs = len(request.prompt)
        else:
            num_reqs = 1
        for i in range(num_reqs):
            sampling_params.append(
                {
                    "temperature": request.temperature,
                    "max_new_tokens": request.max_tokens,
                    "min_new_tokens": request.min_tokens,
                    "stop": request.stop,
                    "stop_token_ids": request.stop_token_ids,
                    "top_p": request.top_p,
                    "presence_penalty": request.presence_penalty,
                    "frequency_penalty": request.frequency_penalty,
                    "repetition_penalty": request.repetition_penalty,
                    "regex": request.regex,
                    "json_schema": request.json_schema,
                    "n": request.n,
                    "ignore_eos": request.ignore_eos,
522
523
524
525
                    "no_stop_trim": (
                        request.no_stop_trim
                        if not isinstance(request.no_stop_trim, list)
                        else request.no_stop_trim[i]
526
527
528
529
530
531
532
                    ),
                }
            )
        if num_reqs == 1:
            sampling_params_list.append(sampling_params[0])
        else:
            sampling_params_list.append(sampling_params)
533
534
535
536

    if len(all_requests) == 1:
        prompt = prompts[0]
        sampling_params_list = sampling_params_list[0]
537
        logprob_start_lens = logprob_start_lens[0]
538
539
        return_logprobs = return_logprobs[0]
        top_logprobs_nums = top_logprobs_nums[0]
yichuan~'s avatar
yichuan~ committed
540
        if isinstance(prompt, str) or isinstance(prompt[0], str):
541
542
543
            prompt_kwargs = {"text": prompt}
        else:
            prompt_kwargs = {"input_ids": prompt}
544
    else:
545
        if isinstance(prompts[0], str):
546
547
548
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
549

550
    adapted_request = GenerateReqInput(
551
        **prompt_kwargs,
552
        sampling_params=sampling_params_list,
553
554
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
555
        logprob_start_len=logprob_start_lens,
556
        return_text_in_logprobs=True,
557
        stream=all_requests[0].stream,
558
        rid=request_ids,
559
    )
yichuan~'s avatar
yichuan~ committed
560

561
562
563
564
565
    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


yichuan~'s avatar
yichuan~ committed
566
def v1_generate_response(request, ret, tokenizer_manager, to_file=False):
567
568
569
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
570
    if (not isinstance(request, list)) and request.echo:
571
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
572
573
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
574
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
575
576
577
578
579
580
581
582
583
584
585
586
587
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
                tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
                tokenizer_manager.tokenizer.decode(
                    request.prompt, skip_special_tokens=True
                )
            ]
588
        else:
yichuan~'s avatar
yichuan~ committed
589
            # for the case of single str prompt
590
591
592
593
594
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
595
        if isinstance(request, list) and request[idx].echo:
596
597
            echo = True
            text = request[idx].prompt + text
yichuan~'s avatar
yichuan~ committed
598
599
600
        if (not isinstance(request, list)) and echo:
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
601
602

        logprobs = False
yichuan~'s avatar
yichuan~ committed
603
        if isinstance(request, list) and request[idx].logprobs:
604
            logprobs = True
yichuan~'s avatar
yichuan~ committed
605
        elif (not isinstance(request, list)) and request.logprobs:
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

        if to_file:
625
            # to make the choise data json serializable
626
627
628
629
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
630
631
632
633
                "finish_reason": (
                    ret_item["meta_info"]["finish_reason"]["type"]
                    if ret_item["meta_info"]["finish_reason"]
                    else ""
634
                ),
635
636
637
638
639
640
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
641
642
643
644
                finish_reason=(
                    ret_item["meta_info"]["finish_reason"]["type"]
                    if ret_item["meta_info"]["finish_reason"]
                    else ""
645
                ),
646
647
648
649
650
651
652
653
654
655
656
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
657
                    # remain the same but if needed we can change that
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
675
676
677
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
678
679
680
681
682
683
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
684
                prompt_tokens=prompt_tokens,
685
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
686
                total_tokens=prompt_tokens + completion_tokens,
687
688
689
690
691
692
693
694
695
            ),
        )
    return response


async def v1_completions(tokenizer_manager, raw_request: Request):
    request_json = await raw_request.json()
    all_requests = [CompletionRequest(**request_json)]
    adapted_request, request = v1_generate_request(all_requests)
696
697
698
699

    if adapted_request.stream:

        async def generate_stream_resp():
700
701
702
703
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
704
705
            try:
                async for content in tokenizer_manager.generate_request(
706
707
                    adapted_request, raw_request
                ):
708
709
710
711
712
                    index = content["index"]

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

713
                    text = content["text"]
714
715
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
716
717
718

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
719
720
721
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
                                    prompts = tokenizer_manager.tokenizer.decode(
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
                                    prompts = tokenizer_manager.tokenizer.decode(
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
739

740
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
741
                            text = prompts + text
742
743
744
745

                    if request.logprobs:
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
746
747
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
748
                            ]
749
750
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
751
752
                            ]
                        else:
753
754
                            input_token_logprobs = None
                            input_top_logprobs = None
755
756

                        logprobs = to_openai_style_logprobs(
757
758
759
760
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
761
                            ][n_prev_token:],
762
763
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
764
                            ][n_prev_token:],
765
                        )
766
                        n_prev_token = len(
767
                            content["meta_info"]["output_token_logprobs"]
768
                        )
769
                    else:
770
                        logprobs = None
771

772
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
773
                    stream_buffer = stream_buffer + delta
774
                    choice_data = CompletionResponseStreamChoice(
775
                        index=index,
776
777
                        text=delta,
                        logprobs=logprobs,
778
779
780
781
                        finish_reason=(
                            content["meta_info"]["finish_reason"]["type"]
                            if content["meta_info"]["finish_reason"]
                            else ""
782
                        ),
783
784
785
786
787
788
789
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
790
791
792
793

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

794
                    yield f"data: {chunk.model_dump_json()}\n\n"
795
                if request.stream_options and request.stream_options.include_usage:
796
797
798
799
800
801
802
803
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
804
                    usage = UsageInfo(
805
806
807
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
808
809
810
811
812
813
814
815
816
817
818
819
                    )

                    final_usage_chunk = CompletionStreamResponse(
                        id=str(uuid.uuid4().hex),
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
                        exclude_unset=True, exclude_none=True
                    )
                    yield f"data: {final_usage_data}\n\n"
820
821
822
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
823
824
            yield "data: [DONE]\n\n"

825
826
827
828
829
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
            background=tokenizer_manager.create_abort_task(adapted_request),
        )
830
831

    # Non-streaming response.
832
833
    try:
        ret = await tokenizer_manager.generate_request(
834
835
            adapted_request, raw_request
        ).__anext__()
836
837
    except ValueError as e:
        return create_error_response(str(e))
838

839
840
841
    if not isinstance(ret, list):
        ret = [ret]

yichuan~'s avatar
yichuan~ committed
842
    response = v1_generate_response(request, ret, tokenizer_manager)
843
    return response
844

845

846
def v1_chat_generate_request(
847
848
849
    all_requests: List[ChatCompletionRequest],
    tokenizer_manager,
    request_ids: List[str] = None,
850
):
851
    input_ids = []
852
853
    sampling_params_list = []
    image_data_list = []
854
    return_logprobs = []
855
    logprob_start_lens = []
856
    top_logprobs_nums = []
857
    modalities_list = []
858
859
860

    # NOTE: with openai API, the prompt's logprobs are always not computed

861
862
863
864
865
866
867
868
869
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
        #    None skips any image processing in GenerateReqInput.
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
            if chat_template_name is None:
870
871
872
873
874
875
876
877
878
879
880
881
882
                openai_compatible_messages = []
                for message in request.messages:
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
883
884
885
886
887
                if openai_compatible_messages[-1]["role"] == "assistant":
                    assistant_prefix = openai_compatible_messages[-1]["content"]
                    openai_compatible_messages = openai_compatible_messages[:-1]
                else:
                    assistant_prefix = None
888
                prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
889
890
891
                    openai_compatible_messages,
                    tokenize=True,
                    add_generation_prompt=True,
892
                )
893
894
                if assistant_prefix:
                    prompt_ids += tokenizer_manager.tokenizer.encode(assistant_prefix)
895
896
                stop = request.stop
                image_data = None
897
                modalities = []
898
            else:
899
900
901
                conv = generate_chat_conv(request, chat_template_name)
                prompt = conv.get_prompt()
                image_data = conv.image_data
902
                modalities = conv.modalities
903
904
905
906
907
908
                stop = conv.stop_str or []
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
909
                prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
910
        else:
911
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
912
            prompt_ids = request.messages
913
914
            stop = request.stop
            image_data = None
915
            modalities = []
916
        input_ids.append(prompt_ids)
917
        return_logprobs.append(request.logprobs)
918
        logprob_start_lens.append(-1)
919
        top_logprobs_nums.append(request.top_logprobs or 0)
920
921
922
923
924
925
926
927
928
929
930
931
932

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
            "n": request.n,
933
            "ignore_eos": request.ignore_eos,
934
935
936
937
938
939
940
        }
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
        sampling_params_list.append(sampling_params)

941
        image_data_list.append(image_data)
942
        modalities_list.extend(modalities)
943
    if len(all_requests) == 1:
944
        input_ids = input_ids[0]
yichuan~'s avatar
yichuan~ committed
945
946
947
948
        if isinstance(input_ids, str):
            prompt_kwargs = {"text": input_ids}
        else:
            prompt_kwargs = {"input_ids": input_ids}
949
        sampling_params_list = sampling_params_list[0]
950
        image_data_list = image_data_list[0]
951
        return_logprobs = return_logprobs[0]
952
        logprob_start_lens = logprob_start_lens[0]
953
        top_logprobs_nums = top_logprobs_nums[0]
954
        modalities_list = modalities_list[:1]
yichuan~'s avatar
yichuan~ committed
955
956
957
958
959
    else:
        if isinstance(input_ids[0], str):
            prompt_kwargs = {"text": input_ids}
        else:
            prompt_kwargs = {"input_ids": input_ids}
960

961
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
962
        **prompt_kwargs,
963
        image_data=image_data_list,
964
        sampling_params=sampling_params_list,
965
        return_logprob=return_logprobs,
966
        logprob_start_len=logprob_start_lens,
967
968
969
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
970
        rid=request_ids,
971
        modalities=modalities_list,
972
    )
973
974
975
    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests
976

977

978
def v1_chat_generate_response(request, ret, to_file=False, cache_report=False):
979
980
981
    choices = []

    for idx, ret_item in enumerate(ret):
982
        logprobs = False
yichuan~'s avatar
yichuan~ committed
983
        if isinstance(request, list) and request[idx].logprobs:
984
            logprobs = True
yichuan~'s avatar
yichuan~ committed
985
        elif (not isinstance(request, list)) and request.logprobs:
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
            token_logprobs = []
            for token, logprob in zip(logprobs.tokens, logprobs.token_logprobs):
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
                    for top_token, top_logprob in logprobs.top_logprobs[0].items():
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1018

1019
        if to_file:
1020
            # to make the choice data json serializable
1021
1022
1023
            choice_data = {
                "index": 0,
                "message": {"role": "assistant", "content": ret_item["text"]},
1024
                "logprobs": choice_logprobs,
1025
1026
1027
1028
                "finish_reason": (
                    ret_item["meta_info"]["finish_reason"]["type"]
                    if ret_item["meta_info"]["finish_reason"]
                    else ""
1029
                ),
1030
            }
1031
        else:
1032
1033
1034
            choice_data = ChatCompletionResponseChoice(
                index=idx,
                message=ChatMessage(role="assistant", content=ret_item["text"]),
1035
                logprobs=choice_logprobs,
1036
1037
1038
1039
                finish_reason=(
                    ret_item["meta_info"]["finish_reason"]["type"]
                    if ret_item["meta_info"]["finish_reason"]
                    else ""
1040
                ),
1041
1042
1043
            )

        choices.append(choice_data)
1044

1045
1046
1047
1048
1049
1050
1051
1052
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1053
                    # remain the same but if needed we can change that
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1070
    else:
1071
1072
1073
1074
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1075
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
1076
1077
1078
1079
1080
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1081
1082
1083
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1084
1085
1086
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
1087
1088
1089
            ),
        )
        return response
1090

1091
1092
1093
1094
1095

async def v1_chat_completions(tokenizer_manager, raw_request: Request):
    request_json = await raw_request.json()
    all_requests = [ChatCompletionRequest(**request_json)]
    adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
1096
1097
1098
1099

    if adapted_request.stream:

        async def generate_stream_resp():
1100
1101
1102
1103
1104
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1105
            try:
1106
1107
1108
                async for content in tokenizer_manager.generate_request(
                    adapted_request, raw_request
                ):
1109
1110
1111
1112
1113
1114
1115
1116
                    index = content["index"]

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
yichuan~'s avatar
yichuan~ committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
                            ][n_prev_token:],
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1162
1163
1164
1165
                    if is_first:
                        # First chunk with role
                        is_first = False
                        choice_data = ChatCompletionResponseStreamChoice(
1166
                            index=index,
1167
                            delta=DeltaMessage(role="assistant"),
1168
1169
1170
1171
                            finish_reason=(
                                content["meta_info"]["finish_reason"]["type"]
                                if content["meta_info"]["finish_reason"]
                                else ""
1172
                            ),
yichuan~'s avatar
yichuan~ committed
1173
                            logprobs=choice_logprobs,
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
1184
                    stream_buffer = stream_buffer + delta
1185
                    choice_data = ChatCompletionResponseStreamChoice(
1186
                        index=index,
1187
                        delta=DeltaMessage(content=delta),
1188
1189
1190
1191
                        finish_reason=(
                            content["meta_info"]["finish_reason"]["type"]
                            if content["meta_info"]["finish_reason"]
                            else ""
1192
                        ),
yichuan~'s avatar
yichuan~ committed
1193
                        logprobs=choice_logprobs,
1194
1195
1196
1197
1198
1199
                    )
                    chunk = ChatCompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        choices=[choice_data],
                        model=request.model,
                    )
1200
1201
1202
1203
1204

                    is_firsts[index] = is_first
                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

1205
                    yield f"data: {chunk.model_dump_json()}\n\n"
1206
                if request.stream_options and request.stream_options.include_usage:
1207
1208
1209
1210
1211
1212
1213
1214
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1215
                    usage = UsageInfo(
1216
1217
1218
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
                    )

                    final_usage_chunk = ChatCompletionStreamResponse(
                        id=str(uuid.uuid4().hex),
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
                        exclude_unset=True, exclude_none=True
                    )
                    yield f"data: {final_usage_data}\n\n"
1231
1232
1233
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1234
1235
            yield "data: [DONE]\n\n"

1236
1237
1238
1239
1240
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
            background=tokenizer_manager.create_abort_task(adapted_request),
        )
1241
1242

    # Non-streaming response.
1243
1244
    try:
        ret = await tokenizer_manager.generate_request(
1245
1246
            adapted_request, raw_request
        ).__anext__()
1247
1248
    except ValueError as e:
        return create_error_response(str(e))
1249
1250
1251
    if not isinstance(ret, list):
        ret = [ret]

1252
1253
1254
    response = v1_chat_generate_response(
        request, ret, cache_report=tokenizer_manager.server_args.enable_cache_report
    )
1255

1256
1257
1258
    return response


1259
1260
1261
def v1_embedding_request(all_requests, tokenizer_manager):
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1262
    first_prompt_type = type(all_requests[0].input)
1263
1264

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1265
        prompt = request.input
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        assert (
            type(prompt) == first_prompt_type
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
        if isinstance(prompts[0], str) or isinstance(propmt[0][0], str):
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1292
1293
1294
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1295
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1296
1297
1298
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1299
1300
1301
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328


async def v1_embeddings(tokenizer_manager, raw_request: Request):
    request_json = await raw_request.json()
    all_requests = [EmbeddingRequest(**request_json)]
    adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)

    try:
        ret = await tokenizer_manager.generate_request(
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

Ying Sheng's avatar
Ying Sheng committed
1329
    response = v1_embedding_response(ret, tokenizer_manager.model_path)
1330
1331
1332
1333

    return response


1334
def to_openai_style_logprobs(
1335
1336
1337
1338
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1339
1340
1341
1342
1343
1344
1345
1346
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1347
            # Not supported yet
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1359
1360
1361
1362
1363
1364
1365
1366
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1367

Liangsheng Yin's avatar
Liangsheng Yin committed
1368
    return ret_logprobs