test_utils.py 41.5 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Lifu Huang's avatar
Lifu Huang committed
4
import asyncio
5
import copy
6
import json
7
import logging
8
import os
9
import random
YanbingJiang's avatar
YanbingJiang committed
10
import re
11
import subprocess
12
import threading
13
import time
14
import unittest
15
from concurrent.futures import ThreadPoolExecutor
Byron Hsu's avatar
Byron Hsu committed
16
from dataclasses import dataclass
Liangsheng Yin's avatar
Liangsheng Yin committed
17
from functools import partial
18
from pathlib import Path
19
from types import SimpleNamespace
Lifu Huang's avatar
Lifu Huang committed
20
from typing import Awaitable, Callable, List, Optional, Tuple
Liangsheng Yin's avatar
Liangsheng Yin committed
21

22
import aiohttp
Lianmin Zheng's avatar
Lianmin Zheng committed
23
24
import numpy as np
import requests
25
26
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
27

28
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
29
from sglang.global_config import global_config
30
31
from sglang.srt.utils import (
    get_bool_env_var,
32
    get_device,
33
34
35
36
    is_port_available,
    kill_process_tree,
    retry,
)
37
from sglang.test.run_eval import run_eval
38
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
39

Lianmin Zheng's avatar
Lianmin Zheng committed
40
41
42
# General test models
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
43
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_BASE = "meta-llama/Llama-3.2-1B"
Lianmin Zheng's avatar
Lianmin Zheng committed
44
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
45
46
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST_BASE = "Qwen/Qwen1.5-MoE-A2.7B"
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST_CHAT = "Qwen/Qwen1.5-MoE-A2.7B-Chat"
Lianmin Zheng's avatar
Lianmin Zheng committed
47
48

# MLA test models
woodx's avatar
woodx committed
49
50
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST = "cross-encoder/ms-marco-MiniLM-L6-v2"
Lianmin Zheng's avatar
Lianmin Zheng committed
51
52
53
54
55
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_TEST_MLA = "lmsys/sglang-ci-dsv3-test"
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN = "lmsys/sglang-ci-dsv3-test-NextN"

56
57
58
# NVFP4 models
DEFAULT_DEEPSEEK_NVFP4_MODEL_FOR_TEST = "nvidia/DeepSeek-R1-0528-FP4"

Lianmin Zheng's avatar
Lianmin Zheng committed
59
60
61
62
# FP8 models
DEFAULT_MODEL_NAME_FOR_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_ACCURACY_TEST_FP8 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST_FP8 = (
HandH1998's avatar
HandH1998 committed
63
64
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic"
)
Lianmin Zheng's avatar
Lianmin Zheng committed
65
DEFAULT_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_FP8 = (
66
67
    "nvidia/Llama-3.1-8B-Instruct-FP8"
)
DiweiSun's avatar
DiweiSun committed
68
69
70
71
72
73
DEFAULT_MODEL_NAME_FOR_TEST_QWEN_FP8 = "Qwen/Qwen3-1.7B-FP8"
DEFAULT_MODEL_NAME_FOR_TEST_FP8_WITH_MOE = "gaunernst/DeepSeek-V2-Lite-Chat-FP8"

# W8A8 models
DEFAULT_MODEL_NAME_FOR_TEST_W8A8 = "RedHatAI/Llama-3.2-3B-quantized.w8a8"
DEFAULT_MODEL_NAME_FOR_TEST_W8A8_WITH_MOE = "nytopop/Qwen3-30B-A3B.w8a8"
74

Lianmin Zheng's avatar
Lianmin Zheng committed
75
76
77
# EAGLE
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST = "meta-llama/Llama-2-7b-chat-hf"
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST = "lmsys/sglang-EAGLE-llama2-chat-7B"
Stefan He's avatar
Stefan He committed
78
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3 = "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B"
79
80
81
82
DEFAULT_STANDALONE_SPECULATIVE_TARGET_MODEL_FOR_TEST = (
    "meta-llama/Llama-3.1-8B-Instruct"
)
DEFAULT_STANDALONE_SPECULATIVE_DRAFT_MODEL_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
Lianmin Zheng's avatar
Lianmin Zheng committed
83
84

# Other use cases
Stefan He's avatar
Stefan He committed
85
86
87
DEFAULT_MODEL_NAME_FOR_TEST_LOCAL_ATTENTION = (
    "meta-llama/Llama-4-Scout-17B-16E-Instruct"
)
88
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
Xihuai Wang's avatar
Xihuai Wang committed
89
DEFAULT_REASONING_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
Jinyan Chen's avatar
Jinyan Chen committed
90
DEFAULT_DEEPPEP_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-V3-0324"
91
92
93
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST = (
    "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
)
94
DEFAULT_ENABLE_THINKING_MODEL_NAME_FOR_TEST = "Qwen/Qwen3-30B-A3B"
95
DEFAULT_DEEPSEEK_W4AFP8_MODEL_FOR_TEST = "Barrrrry/DeepSeek-R1-W4AFP8"
Lianmin Zheng's avatar
Lianmin Zheng committed
96
97

# Nightly tests
98
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
99
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
100
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
101
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,zai-org/GLM-4.5-Air-FP8"
102
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4,hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
103
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN = "Qwen/Qwen2.5-1.5B-Instruct"
104
DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST = "Qwen/Qwen2.5-VL-3B-Instruct"
105
106
107
108

DEFAULT_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
DEFAULT_VIDEO_URL = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"

109
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
Lianmin Zheng's avatar
Lianmin Zheng committed
110

111
112
113

def is_in_ci():
    """Return whether it is in CI runner."""
114
    return get_bool_env_var("SGLANG_IS_IN_CI")
115
116


117
118
119
120
121
def is_in_amd_ci():
    """Return whether it is in an AMD CI runner."""
    return get_bool_env_var("SGLANG_AMD_CI")


122
123
124
125
126
127
128
129
130
def _use_cached_default_models(model_repo: str):
    cache_dir = os.getenv("DEFAULT_MODEL_CACHE_DIR")
    if cache_dir and model_repo:
        model_path = os.path.join(cache_dir, model_repo)
        if os.path.isdir(model_path):
            return os.path.abspath(model_path)
    return ""


131
if is_in_ci():
132
133
134
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        5000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
135
else:
136
137
138
139
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
        7000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
    )
DEFAULT_URL_FOR_TEST = f"http://127.0.0.1:{DEFAULT_PORT_FOR_SRT_TEST_RUNNER + 1000}"
140

141
142
143
if is_in_amd_ci():
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 3000

Lianmin Zheng's avatar
Lianmin Zheng committed
144

Liangsheng Yin's avatar
Liangsheng Yin committed
145
146
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


162
163
164
165
166
167
168
169
170
171
172
def find_available_port(base_port: int):
    port = base_port + random.randint(100, 1000)
    while True:
        if is_port_available(port):
            return port
        if port < 60000:
            port += 42
        else:
            port -= 43


Liangsheng Yin's avatar
Liangsheng Yin committed
173
174
175
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


192
def call_generate_outlines(
193
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
194
):
Liangsheng Yin's avatar
Liangsheng Yin committed
195
196
    assert url is not None

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
214
215
216
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
272
273
274
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
275
276
277
278
279
280
281
282
283
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
284
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
285
286
287
288
289
290
291
292
293
294
295
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
296
297
298
299
300
301
302
303
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


304
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
305
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
306
307
308
309
310
311
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
312
313
314
315
        choices=[
            "vllm",
            "outlines",
            "lightllm",
316
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
317
318
319
320
            "guidance",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
321
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
322
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
323
324
325
326
327
328
329
330
331
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
332
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
333
334
            "lightllm": 22000,
            "srt-raw": 30000,
335
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
336
337
338
339
340
        }
        args.port = default_port.get(args.backend, None)
    return args


341
342
343
344
345
346
347
348
349
350
351
352
def auto_config_device() -> str:
    """Auto-config available device platform"""

    try:
        device = get_device()
    except (RuntimeError, ImportError) as e:
        print(f"Warning: {e} - Falling back to CPU")
        device = "cpu"

    return device


353
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
354
355
356
357
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
358
359
360
361
362
363
364
    parser.add_argument(
        "--device",
        type=str,
        default="auto",
        choices=["auto", "cuda", "rocm", "cpu"],
        help="Device type (auto/cuda/rocm/cpu). Auto will detect available platforms",
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
365
    parser.add_argument("--result-file", type=str, default="result.jsonl")
366
    parser.add_argument("--raw-result-file", type=str)
Lianmin Zheng's avatar
Lianmin Zheng committed
367
    args = parser.parse_args()
368

Lianmin Zheng's avatar
Lianmin Zheng committed
369
370
371
    return args


372
def select_sglang_backend(args: argparse.Namespace):
373
374
375
    from sglang.lang.backend.openai import OpenAI
    from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint

Lianmin Zheng's avatar
Lianmin Zheng committed
376
377
378
379
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
380
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
381
382
383
384
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
385
386


387
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
388
389
390
391
392
393
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
394
395
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
396
397
398
399
400
401
402
403
404
405
406
407
408
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


409
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


426
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
427
428
429
430
431
432
433
434
435
436
437
438
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


439
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
440
441
442
443
444
445
446
447
448
449
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
450
451


452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
def _get_default_models():
    import inspect

    current_module = inspect.getmodule(_get_default_models)
    default_models = set()
    for name, value in current_module.__dict__.items():
        if (
            isinstance(name, str)
            and "DEFAULT_" in name
            and "MODEL_" in name
            and isinstance(value, str)
        ):
            if "," in value:
                parts = [part.strip() for part in value.split(",")]
                default_models.update(parts)
            else:
                default_models.add(value.strip())
    return json.dumps(list(default_models))


def try_cached_model(model_repo: str):
    model_dir = _use_cached_default_models(model_repo)
    return model_dir if model_dir else model_repo


477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
def popen_with_error_check(command: list[str], allow_exit: bool = False):
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    def _run_and_check():
        stdout, stderr = process.communicate()

        while process.poll() is None:
            time.sleep(5)

        if not allow_exit or process.returncode != 0:
            raise Exception(
                f"{command} exited with code {process.returncode}\n{stdout=}\n{stderr=}"
            )

    t = threading.Thread(target=_run_and_check)
    t.start()
    return process


496
def popen_launch_server(
497
498
499
500
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
501
    other_args: list[str] = [],
502
    env: Optional[dict] = None,
503
    return_stdout_stderr: Optional[tuple] = None,
504
    device: str = "auto",
505
    pd_separated: bool = False,
506
):
507
508
509
510
511
512
513
514
515
516
517
518
519
    """Launch a server process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed
    if device == "auto":
        device = auto_config_device()
        print(f"Auto-configed device: {device}", flush=True)
        other_args = list(other_args)
        other_args += ["--device", str(device)]

520
521
522
    _, host, port = base_url.split(":")
    host = host[2:]

523
    if pd_separated:
524
525
526
527
        command = "sglang.launch_pd_server"
    else:
        command = "sglang.launch_server"

528
529
530
    command = [
        "python3",
        "-m",
531
        command,
532
533
        "--model-path",
        model,
534
        *[str(x) for x in other_args],
535
    ]
Chayenne's avatar
Chayenne committed
536

537
    if pd_separated:
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
        command.extend(
            [
                "--lb-host",
                host,
                "--lb-port",
                port,
            ]
        )
    else:
        command.extend(
            [
                "--host",
                host,
                "--port",
                port,
            ]
        )

556
557
558
    if api_key:
        command += ["--api-key", api_key]

559
560
    print(f"command={' '.join(command)}")

561
562
563
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
564
565
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
566
567
568
569
570
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
571

572
    start_time = time.perf_counter()
573
    with requests.Session() as session:
574
        while time.perf_counter() - start_time < timeout:
575
576
577
578
579
580
581
582
583

            return_code = process.poll()
            if return_code is not None:
                # Server failed to start (non-zero exit code) or crashed
                raise Exception(
                    f"Server process exited with code {return_code}. "
                    "Check server logs for errors."
                )

584
585
586
587
588
589
590
591
592
593
594
595
596
            try:
                headers = {
                    "Content-Type": "application/json; charset=utf-8",
                    "Authorization": f"Bearer {api_key}",
                }
                response = session.get(
                    f"{base_url}/health_generate",
                    headers=headers,
                )
                if response.status_code == 200:
                    return process
            except requests.RequestException:
                pass
597
598
599

            return_code = process.poll()
            if return_code is not None:
fzyzcjy's avatar
fzyzcjy committed
600
601
602
                raise Exception(
                    f"Server unexpectedly exits ({return_code=}). Usually there will be error logs describing the cause far above this line."
                )
603

604
            time.sleep(10)
605
606

    kill_process_tree(process.pid)
607
    raise TimeoutError("Server failed to start within the timeout period.")
608
609


610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
def popen_launch_pd_server(
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: list[str] = (),
    env: Optional[dict] = None,
):
    _, host, port = base_url.split(":")
    host = host[2:]

    command = "sglang.launch_server"

    command = [
        "python3",
        "-m",
        command,
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    command.extend(
        [
            "--host",
            host,
            "--port",
            port,
        ]
    )

    if api_key:
        command += ["--api-key", api_key]

    print(f"command={' '.join(command)}")

646
    process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
647

648
    return process
649
650


651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


Byron Hsu's avatar
Byron Hsu committed
675
676
677
678
679
680
681
@dataclass
class TestFile:
    name: str
    estimated_time: float = 60


def run_unittest_files(files: List[TestFile], timeout_per_file: float):
682
    tic = time.perf_counter()
683
684
    success = True

Lianmin Zheng's avatar
Lianmin Zheng committed
685
    for i, file in enumerate(files):
Lianmin Zheng's avatar
Lianmin Zheng committed
686
        filename, estimated_time = file.name, file.estimated_time
687
        process = None
688

Mingyi's avatar
Mingyi committed
689
        def run_one_file(filename):
690
691
            nonlocal process

Mingyi's avatar
Mingyi committed
692
            filename = os.path.join(os.getcwd(), filename)
Lianmin Zheng's avatar
Lianmin Zheng committed
693
            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
694
                f".\n.\nBegin ({i}/{len(files) - 1}):\npython3 {filename}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
695
696
                flush=True,
            )
697
            tic = time.perf_counter()
Lianmin Zheng's avatar
Lianmin Zheng committed
698

Mingyi's avatar
Mingyi committed
699
700
701
702
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
703
            elapsed = time.perf_counter() - tic
Lianmin Zheng's avatar
Lianmin Zheng committed
704
705

            print(
Lianmin Zheng's avatar
Lianmin Zheng committed
706
                f".\n.\nEnd ({i}/{len(files) - 1}):\n{filename=}, {elapsed=:.0f}, {estimated_time=}\n.\n.\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
707
708
                flush=True,
            )
Mingyi's avatar
Mingyi committed
709
            return process.returncode
710
711

        try:
Mingyi's avatar
Mingyi committed
712
713
714
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
715
716
717
            assert (
                ret_code == 0
            ), f"expected return code 0, but {filename} returned {ret_code}"
718
        except TimeoutError:
719
            kill_process_tree(process.pid)
720
721
            time.sleep(5)
            print(
722
723
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
724
            )
Mingyi's avatar
Mingyi committed
725
726
            success = False
            break
727
728

    if success:
729
        print(f"Success. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
730
    else:
731
        print(f"Fail. Time elapsed: {time.perf_counter() - tic:.2f}s", flush=True)
732
733

    return 0 if success else -1
734
735
736
737


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
738
739


740
741
742
743
744
745
def get_benchmark_args(
    base_url="",
    dataset_name="",
    dataset_path="",
    tokenizer="",
    num_prompts=500,
746
    sharegpt_output_len=None,
747
748
    random_input_len=4096,
    random_output_len=2048,
749
    sharegpt_context_len=None,
750
751
752
    request_rate=float("inf"),
    disable_stream=False,
    disable_ignore_eos=False,
753
    seed: int = 0,
754
    device="auto",
755
    pd_separated: bool = False,
Lifu Huang's avatar
Lifu Huang committed
756
    lora_name=None,
757
758
759
760
761
762
763
764
765
766
767
):
    return SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
        dataset_name=dataset_name,
        dataset_path=dataset_path,
        model=None,
        tokenizer=tokenizer,
        num_prompts=num_prompts,
768
769
        sharegpt_output_len=sharegpt_output_len,
        sharegpt_context_len=sharegpt_context_len,
770
771
772
773
774
775
776
777
778
        random_input_len=random_input_len,
        random_output_len=random_output_len,
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        output_file=None,
        disable_tqdm=False,
        disable_stream=disable_stream,
        return_logprob=False,
779
        seed=seed,
780
781
782
783
        disable_ignore_eos=disable_ignore_eos,
        extra_request_body=None,
        apply_chat_template=False,
        profile=None,
Lifu Huang's avatar
Lifu Huang committed
784
        lora_name=lora_name,
785
        prompt_suffix="",
786
        device=device,
787
        pd_separated=pd_separated,
788
789
790
    )


791
792
793
794
795
796
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
797
798
    dataset_path="",
    tokenizer=None,
799
800
    random_input_len=4096,
    random_output_len=2048,
801
    sharegpt_context_len=None,
802
    disable_stream=False,
803
    disable_ignore_eos=False,
804
    need_warmup=False,
805
    seed: int = 0,
806
    device="auto",
Lifu Huang's avatar
Lifu Huang committed
807
808
    background_task: Optional[Callable[[str, asyncio.Event], Awaitable[None]]] = None,
    lora_name: Optional[str] = None,
809
):
810
811
    if device == "auto":
        device = auto_config_device()
812
813
814
815
816
817
818
819
820
821
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
822
    args = get_benchmark_args(
823
        base_url=base_url,
824
        dataset_name=dataset_name,
825
826
        dataset_path=dataset_path,
        tokenizer=tokenizer,
827
        num_prompts=num_prompts,
828
829
        random_input_len=random_input_len,
        random_output_len=random_output_len,
830
        sharegpt_context_len=sharegpt_context_len,
831
        request_rate=request_rate,
832
        disable_stream=disable_stream,
833
        disable_ignore_eos=disable_ignore_eos,
834
        seed=seed,
835
        device=device,
Lifu Huang's avatar
Lifu Huang committed
836
        lora_name=lora_name,
837
838
    )

Lifu Huang's avatar
Lifu Huang committed
839
    async def _run():
840
841
842
        if need_warmup:
            warmup_args = copy.deepcopy(args)
            warmup_args.num_prompts = 16
Lifu Huang's avatar
Lifu Huang committed
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
            await asyncio.to_thread(run_benchmark, warmup_args)

        start_event = asyncio.Event()
        stop_event = asyncio.Event()
        task_handle = (
            asyncio.create_task(background_task(base_url, start_event, stop_event))
            if background_task
            else None
        )

        try:
            start_event.set()
            result = await asyncio.to_thread(run_benchmark, args)
        finally:
            if task_handle:
                stop_event.set()
                await task_handle

        return result

    try:
        res = asyncio.run(_run())
865
    finally:
866
        kill_process_tree(process.pid)
867
868
869

    assert res["completed"] == num_prompts
    return res
870
871


872
873
874
875
876
877
def run_bench_serving_multi(
    model,
    base_url,
    other_server_args,
    benchmark_args,
    need_warmup=False,
878
    pd_separated=False,
879
880
881
882
883
884
885
):
    # Launch the server
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
886
        pd_separated=pd_separated,
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
    )

    # run benchmark for all
    res_l = []
    try:
        for args in benchmark_args:
            if need_warmup:
                warmup_args = copy.deepcopy(args)
                warmup_args.num_prompts = 16
                run_benchmark(warmup_args)

            res = run_benchmark(args)
            res_l.append((args, res))
    finally:
        kill_process_tree(process.pid)

    return res_l


906
def run_bench_one_batch(model, other_args):
907
908
909
910
911
912
913
914
915
916
917
918
    """Launch a offline process with automatic device detection.

    Args:
        device: Device type ("auto", "cuda", "rocm" or "cpu").
                If "auto", will detect available platforms automatically.
    """
    # Auto-detect device if needed

    device = auto_config_device()
    print(f"Auto-configed device: {device}", flush=True)
    other_args += ["--device", str(device)]

919
920
921
    command = [
        "python3",
        "-m",
922
        "sglang.bench_one_batch",
923
924
925
926
927
928
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
929
        *[str(x) for x in other_args],
930
    ]
saienduri's avatar
saienduri committed
931
932
    if model is not None:
        command += ["--model-path", model]
933
934
935
936
937
938
939
940
941
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

YanbingJiang's avatar
YanbingJiang committed
942
943
944
945
946
947
948
949
950
951
952
953
954
        # Return prefill_latency, decode_throughput, decode_latency
        prefill_line = output.split("\n")[-9]
        decode_line = output.split("\n")[-3]
        pattern = (
            r"latency: (?P<latency>\d+\.\d+).*?throughput:\s*(?P<throughput>\d+\.\d+)"
        )
        match = re.search(pattern, prefill_line)
        if match:
            prefill_latency = float(match.group("latency"))
        match = re.search(pattern, decode_line)
        if match:
            decode_latency = float(match.group("latency"))
            decode_throughput = float(match.group("throughput"))
955
    finally:
956
        kill_process_tree(process.pid)
957

YanbingJiang's avatar
YanbingJiang committed
958
    return prefill_latency, decode_throughput, decode_latency
959
960


961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
def run_bench_offline_throughput(model, other_args):
    command = [
        "python3",
        "-m",
        "sglang.bench_offline_throughput",
        "--num-prompts",
        "1",
        "--dataset-name",
        "random",
        "--random-input-len",
        "256",
        "--random-output-len",
        "256",
        "--model-path",
        model,
        *[str(x) for x in other_args],
    ]

    print(f"{command=}")
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        output_throughput = -1
        for line in output.split("\n"):
            if "Last generation throughput (tok/s):" in line:
                output_throughput = float(line.split(":")[-1])
    finally:
        kill_process_tree(process.pid)

    return output_throughput


999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
def run_bench_one_batch_server(
    model,
    base_url,
    server_args,
    bench_args,
    other_server_args,
    simulate_spec_acc_lens=None,
):
    from sglang.bench_one_batch_server import run_benchmark

    if simulate_spec_acc_lens is not None:
        env = {**os.environ, "SIMULATE_ACC_LEN": str(simulate_spec_acc_lens)}
    else:
        env = None

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
        env=env,
    )
    try:
        run_benchmark(server_args=server_args, bench_args=bench_args)
    finally:
        kill_process_tree(process.pid)


1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
1059
1060


1061
1062
STDERR_FILENAME = "/tmp/stderr.txt"
STDOUT_FILENAME = "/tmp/stdout.txt"
1063
1064


1065
def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
1066
    """Print the output in real time with another thread."""
1067
    while not os.path.exists(filename):
1068
        time.sleep(0.01)
1069

1070
1071
    pt = 0
    while pt >= 0:
1072
        if pt > 0 and not os.path.exists(filename):
1073
            break
1074
1075
1076
1077
1078
        try:
            lines = open(filename).readlines()
        except FileNotFoundError:
            print(f"{pt=}, {os.path.exists(filename)=}")
            raise
1079
1080
        for line in lines[pt:]:
            print(line, end="", flush=True)
1081
            output_lines.append(line)
1082
            pt += 1
1083
        time.sleep(0.1)
1084
1085


1086
1087
def run_and_check_memory_leak(
    workload_func,
1088
    disable_radix_cache,
1089
    enable_mixed_chunk,
1090
    disable_overlap,
1091
    chunked_prefill_size,
1092
    assert_has_abort,
1093
):
1094
1095
1096
1097
1098
1099
    other_args = [
        "--chunked-prefill-size",
        str(chunked_prefill_size),
        "--log-level",
        "debug",
    ]
1100
1101
1102
1103
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
1104
1105
    if disable_overlap:
        other_args += ["--disable-overlap-schedule"]
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

1127
1128
    # Run the workload
    workload_func(base_url, model)
1129
1130

    # Clean up everything
1131
    kill_process_tree(process.pid)
1132
1133
    stdout.close()
    stderr.close()
1134
1135
1136
1137
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
Lianmin Zheng's avatar
Lianmin Zheng committed
1138
    kill_process_tree(process.pid)
1139
1140
1141
1142
1143
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
1144
    has_abort = False
1145
    for line in output_lines:
Lianmin Zheng's avatar
Lianmin Zheng committed
1146
        if "Uvicorn running" in line:
1147
1148
1149
            has_new_server = True
        if "leak" in line:
            has_leak = True
1150
1151
        if "Abort" in line:
            has_abort = True
1152
1153

    assert has_new_server
1154
    assert not has_leak
1155
1156
    if assert_has_abort:
        assert has_abort
1157
1158


1159
1160
1161
1162
def run_command_and_capture_output(command, env: Optional[dict] = None):
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = subprocess.Popen(
1163
        command, stdout=stdout, stderr=stdout, env=env, text=True
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines, STDOUT_FILENAME))
    t.start()

    # Join the process
    process.wait()

    stdout.close()
    stderr.close()
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
    kill_process_tree(process.pid)
    t.join()

    return output_lines


1186
1187
1188
def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
1189
    disable_overlap=False,
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
1204
            assert metrics["score"] >= 0.65, f"{metrics=}"
1205
1206
1207
        finally:
            pass

Chayenne's avatar
Chayenne committed
1208
1209
1210
1211
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
1212
        disable_overlap,
Chayenne's avatar
Chayenne committed
1213
        chunked_prefill_size,
1214
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1215
    )
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
1247
1248
1249
1250
1251
1252
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
1253
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
1254
    )
1255
1256
1257


def write_github_step_summary(content):
1258
1259
1260
1261
    if not os.environ.get("GITHUB_STEP_SUMMARY"):
        logging.warning("GITHUB_STEP_SUMMARY environment variable not set")
        return

1262
1263
    with open(os.environ["GITHUB_STEP_SUMMARY"], "a") as f:
        f.write(content)
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338


def run_logprob_check(self: unittest.TestCase, arg: Tuple):
    (
        input_len,
        output_len,
        temperature,
        logprob_start_len,
        return_logprob,
        top_logprobs_num,
    ) = arg
    input_ids = list(range(input_len))

    response = requests.post(
        self.base_url + "/generate",
        json={
            "input_ids": input_ids,
            "sampling_params": {
                "temperature": temperature,
                "max_new_tokens": output_len,
                "ignore_eos": True,
            },
            "return_logprob": return_logprob,
            "logprob_start_len": logprob_start_len,
            "top_logprobs_num": top_logprobs_num,
        },
    )
    response_json = response.json()

    res = response_json
    self.assertEqual(res["meta_info"]["prompt_tokens"], input_len)
    self.assertEqual(res["meta_info"]["completion_tokens"], output_len)

    # Test the number of tokens are correct
    if return_logprob:
        self.assertEqual(
            len(res["meta_info"]["input_token_logprobs"]) + logprob_start_len,
            res["meta_info"]["prompt_tokens"],
        )
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), output_len)

        if top_logprobs_num:
            self.assertEqual(
                len(res["meta_info"]["input_top_logprobs"]) + logprob_start_len,
                res["meta_info"]["prompt_tokens"],
            )
            self.assertEqual(len(res["meta_info"]["output_top_logprobs"]), output_len)

            for i in range(output_len):
                self.assertEqual(
                    len(res["meta_info"]["output_top_logprobs"][i]),
                    top_logprobs_num,
                )

                # Test the top-1 tokens are the same as output tokens if temperature == 0
                if temperature == 0:
                    rank = 0
                    while rank < len(res["meta_info"]["output_top_logprobs"][i]):
                        try:
                            self.assertListEqual(
                                res["meta_info"]["output_token_logprobs"][i],
                                res["meta_info"]["output_top_logprobs"][i][rank],
                            )
                            break
                        except AssertionError:
                            # There's a tie. Allow the second item in this case.
                            if (
                                res["meta_info"]["output_top_logprobs"][i][rank][0]
                                == res["meta_info"]["output_top_logprobs"][i][rank + 1][
                                    0
                                ]
                            ):
                                rank += 1
                            else:
                                raise
1339
1340


1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
def send_generate_requests(base_url: str, num_requests: int) -> List[str]:
    """Sends generate request serially and returns status codes. Max concurrency is 1."""

    def generate():
        prompt = """
        System: You are a helpful assistant.
        User: What is the capital of France?
        Assistant: The capital of France is
        """
        response = requests.post(
            f"{base_url}/generate",
            json={
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 50,
                },
            },
        )
        return response.status_code

    return [generate() for _ in range(num_requests)]


async def send_concurrent_generate_requests(
    base_url: str, num_requests: int
) -> List[str]:
    """Sends generate request concurrently and returns status codes. Max concurrency is num_requests."""

    async def async_generate():
        async with aiohttp.ClientSession() as session:
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """
            async with session.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 50,
                    },
                },
            ) as response:
                return response.status

    tasks = [asyncio.create_task(async_generate()) for _ in range(num_requests)]
    return await asyncio.gather(*tasks)


1393
1394
class CustomTestCase(unittest.TestCase):
    def _callTestMethod(self, method):
1395
        max_retry = int(
Yineng Zhang's avatar
Yineng Zhang committed
1396
            os.environ.get("SGLANG_TEST_MAX_RETRY", "1" if is_in_ci() else "0")
1397
        )
1398
1399
1400
        retry(
            lambda: super(CustomTestCase, self)._callTestMethod(method),
            max_retry=max_retry,
1401
        )
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433


def dump_bench_raw_result(
    path: str,
    states,
    preds,
    labels,
):
    if not path:
        return

    rows = []
    for i in range(len(states)):
        state = states[i]
        output = state["answer"]
        prompt = _ensure_remove_suffix(state.text(), output)
        rows.append(
            dict(
                prompt_id=i,
                prompt=prompt,
                output=output,
                correct=bool(preds[i] == labels[i]),
            )
        )

    print(f"BenchRawResultDumper save results to {path}")
    Path(path).write_text("\n".join(json.dumps(row) for row in rows))


def _ensure_remove_suffix(text: str, suffix: str):
    assert text.endswith(suffix)
    return text.removesuffix(suffix)