functional.py 56.6 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
11
from typing import List, Tuple, Any, Optional
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
    """Interpolation modes
24
    Available interpolation methods are ``nearest``, ``bilinear``, ``bicubic``, ``box``, ``hamming``, and ``lanczos``.
25
26
27
28
29
30
31
32
33
34
35
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
36
37
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
38
    inverse_modes_mapping = {
39
40
41
42
43
44
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
45
46
47
48
49
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
50
51
52
53
54
55
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
56
57
}

vfdev's avatar
vfdev committed
58
59
60
_is_pil_image = F_pil._is_pil_image


61
62
63
64
65
66
67
68
def get_image_size(img: Tensor) -> List[int]:
    """Returns the size of an image as [width, height].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image size.
vfdev's avatar
vfdev committed
69
70
    """
    if isinstance(img, torch.Tensor):
71
        return F_t.get_image_size(img)
72

73
    return F_pil.get_image_size(img)
74

vfdev's avatar
vfdev committed
75

76
77
78
79
80
81
82
83
def get_image_num_channels(img: Tensor) -> int:
    """Returns the number of channels of an image.

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        int: The number of channels.
84
    """
85
    if isinstance(img, torch.Tensor):
86
        return F_t.get_image_num_channels(img)
87

88
    return F_pil.get_image_num_channels(img)
89
90


vfdev's avatar
vfdev committed
91
92
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
93
94
95
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
96
97
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
98
    return img.ndim in {2, 3}
99
100
101
102


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
103
    This function does not support torchscript.
104

105
    See :class:`~torchvision.transforms.ToTensor` for more details.
106
107
108
109
110
111
112

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
113
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
114
115
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

116
117
118
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

119
120
    default_float_dtype = torch.get_default_dtype()

121
122
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
123
124
125
        if pic.ndim == 2:
            pic = pic[:, :, None]

126
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
127
        # backward compatibility
128
        if isinstance(img, torch.ByteTensor):
129
            return img.to(dtype=default_float_dtype).div(255)
130
131
        else:
            return img
132
133

    if accimage is not None and isinstance(pic, accimage.Image):
134
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
135
        pic.copyto(nppic)
136
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
137
138

    # handle PIL Image
139
140
141
142
    mode_to_nptype = {'I': np.int32, 'I;16': np.int16, 'F': np.float32}
    img = torch.from_numpy(
        np.array(pic, mode_to_nptype.get(pic.mode, np.uint8), copy=True)
    )
143

144
145
    if pic.mode == '1':
        img = 255 * img
146
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
147
    # put it from HWC to CHW format
148
    img = img.permute((2, 0, 1)).contiguous()
149
    if isinstance(img, torch.ByteTensor):
150
        return img.to(dtype=default_float_dtype).div(255)
151
152
153
154
    else:
        return img


155
156
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
157
    This function does not support torchscript.
158

vfdev's avatar
vfdev committed
159
    See :class:`~torchvision.transforms.PILToTensor` for more details.
160
161
162
163
164
165
166

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
167
    if not F_pil._is_pil_image(pic):
168
169
170
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
171
172
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
173
174
175
176
177
178
179
180
181
182
183
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


184
185
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
186
    This function does not support PIL Image.
187
188
189
190
191
192

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
193
        Tensor: Converted image
194
195
196
197
198
199
200
201
202
203
204
205

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
206
207
208
209
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
210
211


212
def to_pil_image(pic, mode=None):
213
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
214

215
    See :class:`~torchvision.transforms.ToPILImage` for more details.
216
217
218
219
220

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

221
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
222
223
224
225

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
226
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
227
228
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
229
230
231
232
233
234
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
235
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
236

237
238
239
240
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
241
242
243
244
245
246
247
248
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

249
250
251
252
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

253
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
254
    if isinstance(pic, torch.Tensor):
255
256
257
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
258
259
260
261
262
263
264
265
266
267

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
268
        elif npimg.dtype == np.int16:
269
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
270
        elif npimg.dtype == np.int32:
271
272
273
274
275
276
277
278
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
279
280
281
282
283
284
285
286
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

287
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
288
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


307
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
308
    """Normalize a float tensor image with mean and standard deviation.
309
    This transform does not support PIL Image.
310

311
    .. note::
surgan12's avatar
surgan12 committed
312
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
313

314
    See :class:`~torchvision.transforms.Normalize` for more details.
315
316

    Args:
317
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
318
        mean (sequence): Sequence of means for each channel.
319
        std (sequence): Sequence of standard deviations for each channel.
320
        inplace(bool,optional): Bool to make this operation inplace.
321
322
323
324

    Returns:
        Tensor: Normalized Tensor image.
    """
325
326
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
327

328
329
330
    if not tensor.is_floating_point():
        raise TypeError('Input tensor should be a float tensor. Got {}.'.format(tensor.dtype))

331
332
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
333
                         '{}.'.format(tensor.size()))
334

surgan12's avatar
surgan12 committed
335
336
337
    if not inplace:
        tensor = tensor.clone()

338
339
340
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
341
342
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
343
    if mean.ndim == 1:
344
        mean = mean.view(-1, 1, 1)
345
    if std.ndim == 1:
346
        std = std.view(-1, 1, 1)
347
    tensor.sub_(mean).div_(std)
348
    return tensor
349
350


351
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR,
352
           max_size: Optional[int] = None, antialias: Optional[bool] = None) -> Tensor:
vfdev's avatar
vfdev committed
353
    r"""Resize the input image to the given size.
354
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
355
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
356

357
358
359
360
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
361
362
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.
363

364
    Args:
vfdev's avatar
vfdev committed
365
        img (PIL Image or Tensor): Image to be resized.
366
367
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
368
            the smaller edge of the image will be matched to this number maintaining
369
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
370
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
371
372
373

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
374
375
376
377
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
378
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
379
380
381
382
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
383
            ``max_size``. As a result, ``size`` might be overruled, i.e the
384
385
386
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
387
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
388
389
390
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
            ``InterpolationMode.BILINEAR`` only mode. This can help making the output for PIL images and tensors
            closer.
391
392
393

            .. warning::
                There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor.
394
395

    Returns:
vfdev's avatar
vfdev committed
396
        PIL Image or Tensor: Resized image.
397
    """
398
399
400
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
401
402
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
403
404
405
        )
        interpolation = _interpolation_modes_from_int(interpolation)

406
407
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
408

vfdev's avatar
vfdev committed
409
    if not isinstance(img, torch.Tensor):
410
411
412
413
        if antialias is not None and not antialias:
            warnings.warn(
                "Anti-alias option is always applied for PIL Image input. Argument antialias is ignored."
            )
414
        pil_interpolation = pil_modes_mapping[interpolation]
415
        return F_pil.resize(img, size=size, interpolation=pil_interpolation, max_size=max_size)
vfdev's avatar
vfdev committed
416

417
    return F_t.resize(img, size=size, interpolation=interpolation.value, max_size=max_size, antialias=antialias)
418
419
420
421
422
423
424
425


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


426
427
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
428
    If the image is torch Tensor, it is expected
429
430
431
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
432
433

    Args:
434
        img (PIL Image or Tensor): Image to be padded.
435
436
437
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
438
            this is the padding for the left, top, right and bottom borders respectively.
439
440
441
442

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
443
444
445
446
447
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
448
449
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
450
451
452

            - constant: pads with a constant value, this value is specified with fill

453
454
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
455

456
457
458
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
459

460
461
462
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
463
464

    Returns:
465
        PIL Image or Tensor: Padded image.
466
    """
467
468
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
469

470
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
471
472


vfdev's avatar
vfdev committed
473
474
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
475
    If the image is torch Tensor, it is expected
476
477
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then cropped.
478

479
    Args:
vfdev's avatar
vfdev committed
480
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
481
482
483
484
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
485

486
    Returns:
vfdev's avatar
vfdev committed
487
        PIL Image or Tensor: Cropped image.
488
489
    """

vfdev's avatar
vfdev committed
490
491
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
492

vfdev's avatar
vfdev committed
493
    return F_t.crop(img, top, left, height, width)
494

vfdev's avatar
vfdev committed
495
496
497

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
498
    If the image is torch Tensor, it is expected
499
500
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
501

502
    Args:
vfdev's avatar
vfdev committed
503
        img (PIL Image or Tensor): Image to be cropped.
504
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
505
506
            it is used for both directions.

507
    Returns:
vfdev's avatar
vfdev committed
508
        PIL Image or Tensor: Cropped image.
509
    """
510
511
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
512
513
514
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

515
    image_width, image_height = get_image_size(img)
516
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
517

518
519
520
521
522
523
524
525
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
526
        image_width, image_height = get_image_size(img)
527
528
529
        if crop_width == image_width and crop_height == image_height:
            return img

530
531
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
532
    return crop(img, crop_top, crop_left, crop_height, crop_width)
533
534


535
def resized_crop(
536
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
537
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
538
539
) -> Tensor:
    """Crop the given image and resize it to desired size.
540
    If the image is torch Tensor, it is expected
541
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
542

543
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
544
545

    Args:
546
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
547
548
549
550
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
551
        size (sequence or int): Desired output size. Same semantics as ``resize``.
552
553
554
555
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
556
557
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

558
    Returns:
559
        PIL Image or Tensor: Cropped image.
560
    """
561
    img = crop(img, top, left, height, width)
562
563
564
565
    img = resize(img, size, interpolation)
    return img


566
def hflip(img: Tensor) -> Tensor:
567
    """Horizontally flip the given image.
568
569

    Args:
vfdev's avatar
vfdev committed
570
        img (PIL Image or Tensor): Image to be flipped. If img
571
            is a Tensor, it is expected to be in [..., H, W] format,
572
            where ... means it can have an arbitrary number of leading
573
            dimensions.
574
575

    Returns:
vfdev's avatar
vfdev committed
576
        PIL Image or Tensor:  Horizontally flipped image.
577
    """
578
579
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
580

581
    return F_t.hflip(img)
582
583


584
585
586
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
587
588
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
589
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
590
591
592
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
593
594
595
596
597
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

598
599
600
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
601
602
603
604
605
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
606

607
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
608
    res = torch.linalg.lstsq(a_matrix, b_matrix, driver='gels').solution
609

610
    output: List[float] = res.tolist()
611
    return output
612
613


614
615
616
617
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
618
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
619
        fill: Optional[List[float]] = None
620
621
) -> Tensor:
    """Perform perspective transform of the given image.
622
    If the image is torch Tensor, it is expected
623
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
624
625

    Args:
626
627
628
629
630
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
631
632
633
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
634
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
635
636
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
637
638
639
640

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
641

642
    Returns:
643
        PIL Image or Tensor: transformed Image.
644
    """
645

646
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
647

648
649
650
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
651
652
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
653
654
655
        )
        interpolation = _interpolation_modes_from_int(interpolation)

656
657
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
658

659
    if not isinstance(img, torch.Tensor):
660
661
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
662

663
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
664
665


666
def vflip(img: Tensor) -> Tensor:
667
    """Vertically flip the given image.
668
669

    Args:
vfdev's avatar
vfdev committed
670
        img (PIL Image or Tensor): Image to be flipped. If img
671
            is a Tensor, it is expected to be in [..., H, W] format,
672
            where ... means it can have an arbitrary number of leading
673
            dimensions.
674
675

    Returns:
676
        PIL Image or Tensor:  Vertically flipped image.
677
    """
678
679
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
680

681
    return F_t.vflip(img)
682
683


vfdev's avatar
vfdev committed
684
685
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
686
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
687
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
688
689
690
691
692
693

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
694
695
696
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
697
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
698

699
    Returns:
700
       tuple: tuple (tl, tr, bl, br, center)
701
       Corresponding top left, top right, bottom left, bottom right and center crop.
702
703
704
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
705
706
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
707

vfdev's avatar
vfdev committed
708
709
710
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

711
    image_width, image_height = get_image_size(img)
712
713
714
715
716
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
717
718
719
720
721
722
723
724
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
725
726


vfdev's avatar
vfdev committed
727
728
729
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
730
    flipped version of these (horizontal flipping is used by default).
731
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
732
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
733
734
735
736
737

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

738
    Args:
vfdev's avatar
vfdev committed
739
        img (PIL Image or Tensor): Image to be cropped.
740
        size (sequence or int): Desired output size of the crop. If size is an
741
            int instead of sequence like (h, w), a square crop (size, size) is
742
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
743
        vertical_flip (bool): Use vertical flipping instead of horizontal
744
745

    Returns:
746
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
747
748
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
749
750
751
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
752
753
754
755
756
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
757
758
759
760
761
762
763
764
765
766
767
768

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


769
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
770
    """Adjust brightness of an image.
771
772

    Args:
vfdev's avatar
vfdev committed
773
        img (PIL Image or Tensor): Image to be adjusted.
774
775
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
776
777
778
779
780
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
781
        PIL Image or Tensor: Brightness adjusted image.
782
    """
783
784
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
785

786
    return F_t.adjust_brightness(img, brightness_factor)
787
788


789
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
790
    """Adjust contrast of an image.
791
792

    Args:
vfdev's avatar
vfdev committed
793
        img (PIL Image or Tensor): Image to be adjusted.
794
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
795
            where ... means it can have an arbitrary number of leading dimensions.
796
797
798
799
800
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
801
        PIL Image or Tensor: Contrast adjusted image.
802
    """
803
804
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
805

806
    return F_t.adjust_contrast(img, contrast_factor)
807
808


809
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
810
811
812
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
813
        img (PIL Image or Tensor): Image to be adjusted.
814
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
815
            where ... means it can have an arbitrary number of leading dimensions.
816
817
818
819
820
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
821
        PIL Image or Tensor: Saturation adjusted image.
822
    """
823
824
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
825

826
    return F_t.adjust_saturation(img, saturation_factor)
827
828


829
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
830
831
832
833
834
835
836
837
838
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

839
840
841
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
842
843

    Args:
844
        img (PIL Image or Tensor): Image to be adjusted.
845
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
846
            where ... means it can have an arbitrary number of leading dimensions.
847
            If img is PIL Image mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
848
849
850
851
852
853
854
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
855
        PIL Image or Tensor: Hue adjusted image.
856
    """
857
858
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
859

860
    return F_t.adjust_hue(img, hue_factor)
861
862


863
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
864
    r"""Perform gamma correction on an image.
865
866
867
868

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

869
870
871
872
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
873

874
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
875
876

    Args:
877
        img (PIL Image or Tensor): PIL Image to be adjusted.
878
879
880
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
881
882
883
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
884
        gain (float): The constant multiplier.
885
886
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
887
    """
888
889
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
890

891
    return F_t.adjust_gamma(img, gamma, gain)
892
893


vfdev's avatar
vfdev committed
894
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
895
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
896
) -> List[float]:
897
898
899
900
901
902
903
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
904
905
906
907
908
909
910
911
912
913
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
914
915
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

916
917
918
919
920
921
922
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
923
924
925
926
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
927
928

    # Inverted rotation matrix with scale and shear
929
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
930
931
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
932
933

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
934
935
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
936
937

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
938
939
    matrix[2] += cx
    matrix[5] += cy
940

vfdev's avatar
vfdev committed
941
    return matrix
942

vfdev's avatar
vfdev committed
943

vfdev's avatar
vfdev committed
944
def rotate(
945
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
946
        expand: bool = False, center: Optional[List[int]] = None,
947
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
948
949
) -> Tensor:
    """Rotate the image by angle.
950
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
951
952
953
954
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
955
        angle (number): rotation angle value in degrees, counter-clockwise.
956
957
958
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
959
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
960
961
962
963
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
964
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
965
            Default is the center of the image.
966
967
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
968
969
970
971

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
vfdev's avatar
vfdev committed
972
973
974
975
976
977
978

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
979
980
981
982
983
984
985
986
987
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
988
989
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
990
991
992
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
993
994
995
996
997
998
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

999
1000
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1001

vfdev's avatar
vfdev committed
1002
    if not isinstance(img, torch.Tensor):
1003
1004
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
1005
1006
1007

    center_f = [0.0, 0.0]
    if center is not None:
1008
        img_size = get_image_size(img)
1009
1010
1011
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
1012
1013
1014
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
1015
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
1016
1017


vfdev's avatar
vfdev committed
1018
1019
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
1020
1021
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
1022
1023
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1024
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1025
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1026
1027

    Args:
vfdev's avatar
vfdev committed
1028
        img (PIL Image or Tensor): image to transform.
1029
1030
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1031
        scale (float): overall scale
1032
1033
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
1034
            the second value corresponds to a shear parallel to the y axis.
1035
1036
1037
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1038
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1039
1040
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1041
1042
1043
1044

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1045
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
1046
            Please use the ``fill`` parameter instead.
1047
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1048
            Please use the ``interpolation`` parameter instead.
vfdev's avatar
vfdev committed
1049
1050
1051

    Returns:
        PIL Image or Tensor: Transformed image.
1052
    """
1053
1054
1055
1056
1057
1058
1059
1060
1061
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1062
1063
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
1064
1065
1066
1067
1068
1069
1070
1071
1072
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1088
1089
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1090

vfdev's avatar
vfdev committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

1109
    img_size = get_image_size(img)
vfdev's avatar
vfdev committed
1110
1111
1112
1113
1114
1115
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1116
1117
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1118

1119
1120
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1121
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1122
1123


1124
@torch.jit.unused
1125
def to_grayscale(img, num_output_channels=1):
1126
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1127
    This transform does not support torch Tensor.
1128
1129

    Args:
1130
        img (PIL Image): PIL Image to be converted to grayscale.
1131
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1132
1133

    Returns:
1134
1135
        PIL Image: Grayscale version of the image.

1136
1137
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1138
    """
1139
1140
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1141

1142
1143
1144
1145
1146
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1147
1148
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1161
1162
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1163
1164
1165
1166
1167
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1168
1169


1170
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1171
    """ Erase the input Tensor Image with given value.
1172
    This transform does not support PIL Image.
1173
1174
1175
1176
1177
1178
1179
1180

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1181
        inplace(bool, optional): For in-place operations. By default is set False.
1182
1183
1184
1185
1186
1187
1188

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1189
1190
1191
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1192
    img[..., i:i + h, j:j + w] = v
1193
    return img
1194
1195
1196


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1197
1198
1199
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1200
1201
1202
1203
1204

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1205
1206
1207
1208

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1209
1210
1211
1212
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1213
1214
1215
1216
1217
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output
1259
1260
1261


def invert(img: Tensor) -> Tensor:
1262
    """Invert the colors of an RGB/grayscale image.
1263
1264
1265

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1266
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1267
1268
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1280
    """Posterize an image by reducing the number of bits for each color channel.
1281
1282
1283

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1284
            If img is torch Tensor, it should be of type torch.uint8 and
1285
1286
1287
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
    if not (0 <= bits <= 8):
        raise ValueError('The number if bits should be between 0 and 8. Got {}'.format(bits))

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1302
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1303
1304
1305

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1306
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1307
1308
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1320
    """Adjust the sharpness of an image.
1321
1322
1323

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1324
1325
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1340
    """Maximize contrast of an image by remapping its
1341
1342
1343
1344
1345
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1346
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1347
1348
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1360
    """Equalize the histogram of an image by applying
1361
1362
1363
1364
1365
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1366
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1367
            where ... means it can have an arbitrary number of leading dimensions.
1368
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1369
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1370
1371
1372
1373
1374
1375
1376
1377

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)