functional.py 55.1 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
11
from typing import List, Tuple, Any, Optional
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
24
25
26
27
28
29
30
31
32
33
34
    """Interpolation modes
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
35
36
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
37
    inverse_modes_mapping = {
38
39
40
41
42
43
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
44
45
46
47
48
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
49
50
51
52
53
54
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
55
56
}

vfdev's avatar
vfdev committed
57
_is_pil_image = F_pil._is_pil_image
vfdev's avatar
vfdev committed
58
_parse_fill = F_pil._parse_fill
vfdev's avatar
vfdev committed
59
60
61


def _get_image_size(img: Tensor) -> List[int]:
62
    """Returns image size as [w, h]
vfdev's avatar
vfdev committed
63
64
65
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
66

vfdev's avatar
vfdev committed
67
    return F_pil._get_image_size(img)
68

vfdev's avatar
vfdev committed
69

70
def _get_image_num_channels(img: Tensor) -> int:
71
72
    """Returns number of image channels
    """
73
74
75
76
77
78
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
79
80
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
81
82
83
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
84
85
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
86
    return img.ndim in {2, 3}
87
88
89
90


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
91
    This function does not support torchscript.
92

93
    See :class:`~torchvision.transforms.ToTensor` for more details.
94
95
96
97
98
99
100

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
101
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
102
103
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

104
105
106
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

107
108
    default_float_dtype = torch.get_default_dtype()

109
110
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
111
112
113
        if pic.ndim == 2:
            pic = pic[:, :, None]

114
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
115
        # backward compatibility
116
        if isinstance(img, torch.ByteTensor):
117
            return img.to(dtype=default_float_dtype).div(255)
118
119
        else:
            return img
120
121

    if accimage is not None and isinstance(pic, accimage.Image):
122
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
123
        pic.copyto(nppic)
124
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
125
126
127
128
129
130

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
131
132
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
133
134
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
135
136
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
137
138

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
139
    # put it from HWC to CHW format
140
    img = img.permute((2, 0, 1)).contiguous()
141
    if isinstance(img, torch.ByteTensor):
142
        return img.to(dtype=default_float_dtype).div(255)
143
144
145
146
    else:
        return img


147
148
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
149
    This function does not support torchscript.
150

vfdev's avatar
vfdev committed
151
    See :class:`~torchvision.transforms.PILToTensor` for more details.
152
153
154
155
156
157
158

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
159
    if not F_pil._is_pil_image(pic):
160
161
162
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
163
164
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
165
166
167
168
169
170
171
172
173
174
175
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


176
177
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
178
    This function does not support PIL Image.
179
180
181
182
183
184

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
185
        Tensor: Converted image
186
187
188
189
190
191
192
193
194
195
196
197

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
198
199
200
201
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
202
203


204
def to_pil_image(pic, mode=None):
205
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
206

207
    See :class:`~torchvision.transforms.ToPILImage` for more details.
208
209
210
211
212

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

213
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
214
215
216
217

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
218
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
219
220
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
221
222
223
224
225
226
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
227
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
228

229
230
231
232
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
233
234
235
236
237
238
239
240
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

241
242
243
244
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

245
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
246
    if isinstance(pic, torch.Tensor):
247
248
249
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
250
251
252
253
254
255
256
257
258
259

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
260
        elif npimg.dtype == np.int16:
261
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
262
        elif npimg.dtype == np.int32:
263
264
265
266
267
268
269
270
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
271
272
273
274
275
276
277
278
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

279
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
280
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


299
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
300
    """Normalize a float tensor image with mean and standard deviation.
301
    This transform does not support PIL Image.
302

303
    .. note::
surgan12's avatar
surgan12 committed
304
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
305

306
    See :class:`~torchvision.transforms.Normalize` for more details.
307
308

    Args:
309
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
310
        mean (sequence): Sequence of means for each channel.
311
        std (sequence): Sequence of standard deviations for each channel.
312
        inplace(bool,optional): Bool to make this operation inplace.
313
314
315
316

    Returns:
        Tensor: Normalized Tensor image.
    """
317
318
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
319

320
321
322
    if not tensor.is_floating_point():
        raise TypeError('Input tensor should be a float tensor. Got {}.'.format(tensor.dtype))

323
324
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
325
                         '{}.'.format(tensor.size()))
326

surgan12's avatar
surgan12 committed
327
328
329
    if not inplace:
        tensor = tensor.clone()

330
331
332
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
333
334
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
335
    if mean.ndim == 1:
336
        mean = mean.view(-1, 1, 1)
337
    if std.ndim == 1:
338
        std = std.view(-1, 1, 1)
339
    tensor.sub_(mean).div_(std)
340
    return tensor
341
342


343
344
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR,
           max_size: Optional[int] = None) -> Tensor:
vfdev's avatar
vfdev committed
345
    r"""Resize the input image to the given size.
346
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
347
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
348
349

    Args:
vfdev's avatar
vfdev committed
350
        img (PIL Image or Tensor): Image to be resized.
351
352
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
353
            the smaller edge of the image will be matched to this number maintaining
354
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
355
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
356
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
357
358
359
360
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
361
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
362
363
364
365
366
367
368
369
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
            ``max_size``. As a result, ```size` might be overruled, i.e the
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
370
371

    Returns:
vfdev's avatar
vfdev committed
372
        PIL Image or Tensor: Resized image.
373
    """
374
375
376
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
377
378
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
379
380
381
        )
        interpolation = _interpolation_modes_from_int(interpolation)

382
383
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
384

vfdev's avatar
vfdev committed
385
    if not isinstance(img, torch.Tensor):
386
        pil_interpolation = pil_modes_mapping[interpolation]
387
        return F_pil.resize(img, size=size, interpolation=pil_interpolation, max_size=max_size)
vfdev's avatar
vfdev committed
388

389
    return F_t.resize(img, size=size, interpolation=interpolation.value, max_size=max_size)
390
391
392
393
394
395
396
397


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


398
399
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
400
    If the image is torch Tensor, it is expected
401
402
403
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
404
405

    Args:
406
        img (PIL Image or Tensor): Image to be padded.
407
408
409
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
410
            this is the padding for the left, top, right and bottom borders respectively.
411
412
413
414
415
416
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
417
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
418
419
420

            - constant: pads with a constant value, this value is specified with fill

421
422
            - edge: pads with the last value on the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
423
424
425
426
427
428
429
430
431
432

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
433
434

    Returns:
435
        PIL Image or Tensor: Padded image.
436
    """
437
438
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
439

440
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
441
442


vfdev's avatar
vfdev committed
443
444
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
445
446
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
447

448
    Args:
vfdev's avatar
vfdev committed
449
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
450
451
452
453
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
454

455
    Returns:
vfdev's avatar
vfdev committed
456
        PIL Image or Tensor: Cropped image.
457
458
    """

vfdev's avatar
vfdev committed
459
460
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
461

vfdev's avatar
vfdev committed
462
    return F_t.crop(img, top, left, height, width)
463

vfdev's avatar
vfdev committed
464
465
466

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
467
    If the image is torch Tensor, it is expected
468
469
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
470

471
    Args:
vfdev's avatar
vfdev committed
472
        img (PIL Image or Tensor): Image to be cropped.
473
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
474
475
            it is used for both directions.

476
    Returns:
vfdev's avatar
vfdev committed
477
        PIL Image or Tensor: Cropped image.
478
    """
479
480
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
481
482
483
484
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
485
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
486

487
488
489
490
491
492
493
494
495
496
497
498
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
        image_width, image_height = _get_image_size(img)
        if crop_width == image_width and crop_height == image_height:
            return img

499
500
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
501
    return crop(img, crop_top, crop_left, crop_height, crop_width)
502
503


504
def resized_crop(
505
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
506
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
507
508
) -> Tensor:
    """Crop the given image and resize it to desired size.
509
    If the image is torch Tensor, it is expected
510
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
511

512
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
513
514

    Args:
515
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
516
517
518
519
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
520
        size (sequence or int): Desired output size. Same semantics as ``resize``.
521
522
523
524
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
525
526
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

527
    Returns:
528
        PIL Image or Tensor: Cropped image.
529
    """
530
    img = crop(img, top, left, height, width)
531
532
533
534
    img = resize(img, size, interpolation)
    return img


535
def hflip(img: Tensor) -> Tensor:
536
    """Horizontally flip the given image.
537
538

    Args:
vfdev's avatar
vfdev committed
539
        img (PIL Image or Tensor): Image to be flipped. If img
540
            is a Tensor, it is expected to be in [..., H, W] format,
541
            where ... means it can have an arbitrary number of leading
542
            dimensions.
543
544

    Returns:
vfdev's avatar
vfdev committed
545
        PIL Image or Tensor:  Horizontally flipped image.
546
    """
547
548
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
549

550
    return F_t.hflip(img)
551
552


553
554
555
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
556
557
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
558
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
559
560
561
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
562
563
564
565
566
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

567
568
569
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
570
571
572
573
574
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
575

576
577
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
578

579
580
    output: List[float] = res.squeeze(1).tolist()
    return output
581
582


583
584
585
586
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
587
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
588
        fill: Optional[List[float]] = None
589
590
) -> Tensor:
    """Perform perspective transform of the given image.
591
    If the image is torch Tensor, it is expected
592
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
593
594

    Args:
595
596
597
598
599
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
600
601
602
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
603
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
604
605
606
607
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
608
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
609

610
    Returns:
611
        PIL Image or Tensor: transformed Image.
612
    """
613

614
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
615

616
617
618
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
619
620
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
621
622
623
        )
        interpolation = _interpolation_modes_from_int(interpolation)

624
625
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
626

627
    if not isinstance(img, torch.Tensor):
628
629
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
630

631
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
632
633


634
def vflip(img: Tensor) -> Tensor:
635
    """Vertically flip the given image.
636
637

    Args:
vfdev's avatar
vfdev committed
638
        img (PIL Image or Tensor): Image to be flipped. If img
639
            is a Tensor, it is expected to be in [..., H, W] format,
640
            where ... means it can have an arbitrary number of leading
641
            dimensions.
642
643

    Returns:
644
        PIL Image or Tensor:  Vertically flipped image.
645
    """
646
647
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
648

649
    return F_t.vflip(img)
650
651


vfdev's avatar
vfdev committed
652
653
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
654
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
655
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
656
657
658
659
660
661

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
662
663
664
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
665
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
666

667
    Returns:
668
669
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
670
671
672
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
673
674
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
675

vfdev's avatar
vfdev committed
676
677
678
679
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
680
681
682
683
684
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
685
686
687
688
689
690
691
692
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
693
694


vfdev's avatar
vfdev committed
695
696
697
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
698
    flipped version of these (horizontal flipping is used by default).
699
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
700
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
701
702
703
704
705

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

706
    Args:
vfdev's avatar
vfdev committed
707
        img (PIL Image or Tensor): Image to be cropped.
708
        size (sequence or int): Desired output size of the crop. If size is an
709
            int instead of sequence like (h, w), a square crop (size, size) is
710
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
711
        vertical_flip (bool): Use vertical flipping instead of horizontal
712
713

    Returns:
714
715
716
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
717
718
719
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
720
721
722
723
724
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
725
726
727
728
729
730
731
732
733
734
735
736

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


737
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
738
    """Adjust brightness of an image.
739
740

    Args:
vfdev's avatar
vfdev committed
741
        img (PIL Image or Tensor): Image to be adjusted.
742
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
743
        where ... means it can have an arbitrary number of leading dimensions.
744
745
746
747
748
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
749
        PIL Image or Tensor: Brightness adjusted image.
750
    """
751
752
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
753

754
    return F_t.adjust_brightness(img, brightness_factor)
755
756


757
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
758
    """Adjust contrast of an image.
759
760

    Args:
vfdev's avatar
vfdev committed
761
        img (PIL Image or Tensor): Image to be adjusted.
762
763
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
764
765
766
767
768
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
769
        PIL Image or Tensor: Contrast adjusted image.
770
    """
771
772
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
773

774
    return F_t.adjust_contrast(img, contrast_factor)
775
776


777
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
778
779
780
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
781
        img (PIL Image or Tensor): Image to be adjusted.
782
783
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
784
785
786
787
788
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
789
        PIL Image or Tensor: Saturation adjusted image.
790
    """
791
792
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
793

794
    return F_t.adjust_saturation(img, saturation_factor)
795
796


797
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
798
799
800
801
802
803
804
805
806
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

807
808
809
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
810
811

    Args:
812
        img (PIL Image or Tensor): Image to be adjusted.
813
814
815
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
        If img is PIL Image mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
816
817
818
819
820
821
822
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
823
        PIL Image or Tensor: Hue adjusted image.
824
    """
825
826
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
827

828
    return F_t.adjust_hue(img, hue_factor)
829
830


831
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
832
    r"""Perform gamma correction on an image.
833
834
835
836

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

837
838
839
840
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
841

842
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
843
844

    Args:
845
        img (PIL Image or Tensor): PIL Image to be adjusted.
846
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
847
        where ... means it can have an arbitrary number of leading dimensions.
848
        If img is PIL Image, modes with transparency (alpha channel) are not supported.
849
850
851
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
852
        gain (float): The constant multiplier.
853
854
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
855
    """
856
857
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
858

859
    return F_t.adjust_gamma(img, gamma, gain)
860
861


vfdev's avatar
vfdev committed
862
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
863
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
864
) -> List[float]:
865
866
867
868
869
870
871
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
872
873
874
875
876
877
878
879
880
881
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
882
883
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

884
885
886
887
888
889
890
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
891
892
893
894
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
895
896

    # Inverted rotation matrix with scale and shear
897
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
898
899
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
900
901

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
902
903
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
904
905

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
906
907
    matrix[2] += cx
    matrix[5] += cy
908

vfdev's avatar
vfdev committed
909
    return matrix
910

vfdev's avatar
vfdev committed
911

vfdev's avatar
vfdev committed
912
def rotate(
913
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
914
        expand: bool = False, center: Optional[List[int]] = None,
915
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
916
917
) -> Tensor:
    """Rotate the image by angle.
918
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
919
920
921
922
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
923
        angle (number): rotation angle value in degrees, counter-clockwise.
924
925
926
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
927
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
928
929
930
931
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
932
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
933
            Default is the center of the image.
934
935
936
937
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
938
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
vfdev's avatar
vfdev committed
939
940
941
942
943
944
945

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
946
947
948
949
950
951
952
953
954
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
955
956
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
957
958
959
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
960
961
962
963
964
965
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

966
967
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
968

vfdev's avatar
vfdev committed
969
    if not isinstance(img, torch.Tensor):
970
971
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
972
973
974
975

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
976
977
978
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
979
980
981
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
982
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
983
984


vfdev's avatar
vfdev committed
985
986
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
987
988
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
989
990
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
991
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
992
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
993
994

    Args:
vfdev's avatar
vfdev committed
995
        img (PIL Image or Tensor): image to transform.
996
997
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
998
        scale (float): overall scale
999
1000
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
1001
            the second value corresponds to a shear parallel to the y axis.
1002
1003
1004
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1005
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1006
1007
1008
1009
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
1010
1011
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
1012
            Please use the ``fill`` parameter instead.
1013
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1014
            Please use the ``interpolation`` parameter instead.
vfdev's avatar
vfdev committed
1015
1016
1017

    Returns:
        PIL Image or Tensor: Transformed image.
1018
    """
1019
1020
1021
1022
1023
1024
1025
1026
1027
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1028
1029
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
1030
1031
1032
1033
1034
1035
1036
1037
1038
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1054
1055
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1056

vfdev's avatar
vfdev committed
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1082
1083
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1084

1085
1086
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1087
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1088
1089


1090
@torch.jit.unused
1091
def to_grayscale(img, num_output_channels=1):
1092
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1093
    This transform does not support torch Tensor.
1094
1095

    Args:
1096
        img (PIL Image): PIL Image to be converted to grayscale.
1097
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1098
1099

    Returns:
1100
1101
1102
1103
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
1104
    """
1105
1106
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1107

1108
1109
1110
1111
1112
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1113
1114
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1134
1135


1136
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1137
    """ Erase the input Tensor Image with given value.
1138
    This transform does not support PIL Image.
1139
1140
1141
1142
1143
1144
1145
1146

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1147
        inplace(bool, optional): For in-place operations. By default is set False.
1148
1149
1150
1151
1152
1153
1154

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1155
1156
1157
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1158
    img[..., i:i + h, j:j + w] = v
1159
    return img
1160
1161
1162


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1163
1164
1165
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1166
1167
1168
1169
1170

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1171
            In torchscript mode kernel_size as single int is not supported, use a sequence of length 1: ``[ksize, ]``.
1172
1173
1174
1175
1176
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
            Default, None. In torchscript mode sigma as single float is
1177
            not supported, use a sequence of length 1: ``[sigma, ]``.
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output
1219
1220
1221


def invert(img: Tensor) -> Tensor:
1222
    """Invert the colors of an RGB/grayscale image.
1223
1224
1225

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1226
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1227
1228
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1240
    """Posterize an image by reducing the number of bits for each color channel.
1241
1242
1243

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1244
            If img is torch Tensor, it should be of type torch.uint8 and
1245
1246
1247
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
    if not (0 <= bits <= 8):
        raise ValueError('The number if bits should be between 0 and 8. Got {}'.format(bits))

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1262
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1263
1264
1265

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1266
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1267
1268
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1280
    """Adjust the sharpness of an image.
1281
1282
1283

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1284
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1285
        where ... means it can have an arbitrary number of leading dimensions.
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1300
    """Maximize contrast of an image by remapping its
1301
1302
1303
1304
1305
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1306
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1307
1308
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1320
    """Equalize the histogram of an image by applying
1321
1322
1323
1324
1325
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1326
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1327
1328
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1329
1330
1331
1332
1333
1334
1335
1336

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)