functional.py 55.5 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
11
from typing import List, Tuple, Any, Optional
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
24
25
26
27
28
29
30
31
32
33
34
    """Interpolation modes
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
35
36
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
37
    inverse_modes_mapping = {
38
39
40
41
42
43
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
44
45
46
47
48
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
49
50
51
52
53
54
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
55
56
}

vfdev's avatar
vfdev committed
57
58
59
60
_is_pil_image = F_pil._is_pil_image


def _get_image_size(img: Tensor) -> List[int]:
61
    """Returns image size as [w, h]
vfdev's avatar
vfdev committed
62
63
64
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
65

vfdev's avatar
vfdev committed
66
    return F_pil._get_image_size(img)
67

vfdev's avatar
vfdev committed
68

69
def _get_image_num_channels(img: Tensor) -> int:
70
71
    """Returns number of image channels
    """
72
73
74
75
76
77
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
78
79
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
80
81
82
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
83
84
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
85
    return img.ndim in {2, 3}
86
87
88
89


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
90
    This function does not support torchscript.
91

92
    See :class:`~torchvision.transforms.ToTensor` for more details.
93
94
95
96
97
98
99

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
100
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
101
102
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

103
104
105
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

106
107
    default_float_dtype = torch.get_default_dtype()

108
109
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
110
111
112
        if pic.ndim == 2:
            pic = pic[:, :, None]

113
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
114
        # backward compatibility
115
        if isinstance(img, torch.ByteTensor):
116
            return img.to(dtype=default_float_dtype).div(255)
117
118
        else:
            return img
119
120

    if accimage is not None and isinstance(pic, accimage.Image):
121
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
122
        pic.copyto(nppic)
123
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
124
125
126
127
128
129

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
130
131
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
132
133
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
134
135
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
136
137

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
138
    # put it from HWC to CHW format
139
    img = img.permute((2, 0, 1)).contiguous()
140
    if isinstance(img, torch.ByteTensor):
141
        return img.to(dtype=default_float_dtype).div(255)
142
143
144
145
    else:
        return img


146
147
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
148
    This function does not support torchscript.
149

vfdev's avatar
vfdev committed
150
    See :class:`~torchvision.transforms.PILToTensor` for more details.
151
152
153
154
155
156
157

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
158
    if not F_pil._is_pil_image(pic):
159
160
161
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
162
163
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
164
165
166
167
168
169
170
171
172
173
174
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


175
176
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
177
    This function does not support PIL Image.
178
179
180
181
182
183

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
184
        Tensor: Converted image
185
186
187
188
189
190
191
192
193
194
195
196

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
197
198
199
200
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
201
202


203
def to_pil_image(pic, mode=None):
204
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
205

206
    See :class:`~torchvision.transforms.ToPILImage` for more details.
207
208
209
210
211

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

212
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
213
214
215
216

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
217
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
218
219
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
220
221
222
223
224
225
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
226
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
227

228
229
230
231
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
232
233
234
235
236
237
238
239
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

240
241
242
243
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

244
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
245
    if isinstance(pic, torch.Tensor):
246
247
248
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
249
250
251
252
253
254
255
256
257
258

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
259
        elif npimg.dtype == np.int16:
260
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
261
        elif npimg.dtype == np.int32:
262
263
264
265
266
267
268
269
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
270
271
272
273
274
275
276
277
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

278
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
279
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


298
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
299
    """Normalize a float tensor image with mean and standard deviation.
300
    This transform does not support PIL Image.
301

302
    .. note::
surgan12's avatar
surgan12 committed
303
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
304

305
    See :class:`~torchvision.transforms.Normalize` for more details.
306
307

    Args:
308
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
309
        mean (sequence): Sequence of means for each channel.
310
        std (sequence): Sequence of standard deviations for each channel.
311
        inplace(bool,optional): Bool to make this operation inplace.
312
313
314
315

    Returns:
        Tensor: Normalized Tensor image.
    """
316
317
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
318

319
320
321
    if not tensor.is_floating_point():
        raise TypeError('Input tensor should be a float tensor. Got {}.'.format(tensor.dtype))

322
323
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
324
                         '{}.'.format(tensor.size()))
325

surgan12's avatar
surgan12 committed
326
327
328
    if not inplace:
        tensor = tensor.clone()

329
330
331
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
332
333
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
334
    if mean.ndim == 1:
335
        mean = mean.view(-1, 1, 1)
336
    if std.ndim == 1:
337
        std = std.view(-1, 1, 1)
338
    tensor.sub_(mean).div_(std)
339
    return tensor
340
341


342
343
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR,
           max_size: Optional[int] = None) -> Tensor:
vfdev's avatar
vfdev committed
344
    r"""Resize the input image to the given size.
345
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
346
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
347

348
349
350
351
352
353
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
        types.

354
    Args:
vfdev's avatar
vfdev committed
355
        img (PIL Image or Tensor): Image to be resized.
356
357
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
358
            the smaller edge of the image will be matched to this number maintaining
359
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
360
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
361
362
363

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
364
365
366
367
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
368
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
369
370
371
372
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
373
            ``max_size``. As a result, ``size`` might be overruled, i.e the
374
375
376
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
377
378

    Returns:
vfdev's avatar
vfdev committed
379
        PIL Image or Tensor: Resized image.
380
    """
381
382
383
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
384
385
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
386
387
388
        )
        interpolation = _interpolation_modes_from_int(interpolation)

389
390
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
391

vfdev's avatar
vfdev committed
392
    if not isinstance(img, torch.Tensor):
393
        pil_interpolation = pil_modes_mapping[interpolation]
394
        return F_pil.resize(img, size=size, interpolation=pil_interpolation, max_size=max_size)
vfdev's avatar
vfdev committed
395

396
    return F_t.resize(img, size=size, interpolation=interpolation.value, max_size=max_size)
397
398
399
400
401
402
403
404


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


405
406
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
407
    If the image is torch Tensor, it is expected
408
409
410
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
411
412

    Args:
413
        img (PIL Image or Tensor): Image to be padded.
414
415
416
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
417
            this is the padding for the left, top, right and bottom borders respectively.
418
419
420
421

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
422
423
424
425
426
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
427
428
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
429
430
431

            - constant: pads with a constant value, this value is specified with fill

432
433
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
434

435
436
437
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
438

439
440
441
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
442
443

    Returns:
444
        PIL Image or Tensor: Padded image.
445
    """
446
447
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
448

449
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
450
451


vfdev's avatar
vfdev committed
452
453
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
454
455
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
456

457
    Args:
vfdev's avatar
vfdev committed
458
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
459
460
461
462
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
463

464
    Returns:
vfdev's avatar
vfdev committed
465
        PIL Image or Tensor: Cropped image.
466
467
    """

vfdev's avatar
vfdev committed
468
469
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
470

vfdev's avatar
vfdev committed
471
    return F_t.crop(img, top, left, height, width)
472

vfdev's avatar
vfdev committed
473
474
475

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
476
    If the image is torch Tensor, it is expected
477
478
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
479

480
    Args:
vfdev's avatar
vfdev committed
481
        img (PIL Image or Tensor): Image to be cropped.
482
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
483
484
            it is used for both directions.

485
    Returns:
vfdev's avatar
vfdev committed
486
        PIL Image or Tensor: Cropped image.
487
    """
488
489
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
490
491
492
493
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
494
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
495

496
497
498
499
500
501
502
503
504
505
506
507
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
        image_width, image_height = _get_image_size(img)
        if crop_width == image_width and crop_height == image_height:
            return img

508
509
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
510
    return crop(img, crop_top, crop_left, crop_height, crop_width)
511
512


513
def resized_crop(
514
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
515
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
516
517
) -> Tensor:
    """Crop the given image and resize it to desired size.
518
    If the image is torch Tensor, it is expected
519
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
520

521
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
522
523

    Args:
524
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
525
526
527
528
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
529
        size (sequence or int): Desired output size. Same semantics as ``resize``.
530
531
532
533
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
534
535
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

536
    Returns:
537
        PIL Image or Tensor: Cropped image.
538
    """
539
    img = crop(img, top, left, height, width)
540
541
542
543
    img = resize(img, size, interpolation)
    return img


544
def hflip(img: Tensor) -> Tensor:
545
    """Horizontally flip the given image.
546
547

    Args:
vfdev's avatar
vfdev committed
548
        img (PIL Image or Tensor): Image to be flipped. If img
549
            is a Tensor, it is expected to be in [..., H, W] format,
550
            where ... means it can have an arbitrary number of leading
551
            dimensions.
552
553

    Returns:
vfdev's avatar
vfdev committed
554
        PIL Image or Tensor:  Horizontally flipped image.
555
    """
556
557
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
558

559
    return F_t.hflip(img)
560
561


562
563
564
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
565
566
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
567
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
568
569
570
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
571
572
573
574
575
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

576
577
578
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
579
580
581
582
583
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
584

585
586
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
587

588
589
    output: List[float] = res.squeeze(1).tolist()
    return output
590
591


592
593
594
595
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
596
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
597
        fill: Optional[List[float]] = None
598
599
) -> Tensor:
    """Perform perspective transform of the given image.
600
    If the image is torch Tensor, it is expected
601
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
602
603

    Args:
604
605
606
607
608
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
609
610
611
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
612
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
613
614
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
615
616
617
618

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
619

620
    Returns:
621
        PIL Image or Tensor: transformed Image.
622
    """
623

624
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
625

626
627
628
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
629
630
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
631
632
633
        )
        interpolation = _interpolation_modes_from_int(interpolation)

634
635
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
636

637
    if not isinstance(img, torch.Tensor):
638
639
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
640

641
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
642
643


644
def vflip(img: Tensor) -> Tensor:
645
    """Vertically flip the given image.
646
647

    Args:
vfdev's avatar
vfdev committed
648
        img (PIL Image or Tensor): Image to be flipped. If img
649
            is a Tensor, it is expected to be in [..., H, W] format,
650
            where ... means it can have an arbitrary number of leading
651
            dimensions.
652
653

    Returns:
654
        PIL Image or Tensor:  Vertically flipped image.
655
    """
656
657
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
658

659
    return F_t.vflip(img)
660
661


vfdev's avatar
vfdev committed
662
663
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
664
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
665
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
666
667
668
669
670
671

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
672
673
674
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
675
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
676

677
    Returns:
678
       tuple: tuple (tl, tr, bl, br, center)
679
       Corresponding top left, top right, bottom left, bottom right and center crop.
680
681
682
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
683
684
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
685

vfdev's avatar
vfdev committed
686
687
688
689
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
690
691
692
693
694
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
695
696
697
698
699
700
701
702
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
703
704


vfdev's avatar
vfdev committed
705
706
707
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
708
    flipped version of these (horizontal flipping is used by default).
709
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
710
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
711
712
713
714
715

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

716
    Args:
vfdev's avatar
vfdev committed
717
        img (PIL Image or Tensor): Image to be cropped.
718
        size (sequence or int): Desired output size of the crop. If size is an
719
            int instead of sequence like (h, w), a square crop (size, size) is
720
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
721
        vertical_flip (bool): Use vertical flipping instead of horizontal
722
723

    Returns:
724
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
725
726
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
727
728
729
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
730
731
732
733
734
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
735
736
737
738
739
740
741
742
743
744
745
746

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


747
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
748
    """Adjust brightness of an image.
749
750

    Args:
vfdev's avatar
vfdev committed
751
        img (PIL Image or Tensor): Image to be adjusted.
752
753
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
754
755
756
757
758
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
759
        PIL Image or Tensor: Brightness adjusted image.
760
    """
761
762
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
763

764
    return F_t.adjust_brightness(img, brightness_factor)
765
766


767
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
768
    """Adjust contrast of an image.
769
770

    Args:
vfdev's avatar
vfdev committed
771
        img (PIL Image or Tensor): Image to be adjusted.
772
773
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
774
775
776
777
778
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
779
        PIL Image or Tensor: Contrast adjusted image.
780
    """
781
782
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
783

784
    return F_t.adjust_contrast(img, contrast_factor)
785
786


787
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
788
789
790
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
791
        img (PIL Image or Tensor): Image to be adjusted.
792
793
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
794
795
796
797
798
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
799
        PIL Image or Tensor: Saturation adjusted image.
800
    """
801
802
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
803

804
    return F_t.adjust_saturation(img, saturation_factor)
805
806


807
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
808
809
810
811
812
813
814
815
816
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

817
818
819
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
820
821

    Args:
822
        img (PIL Image or Tensor): Image to be adjusted.
823
824
825
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
826
827
828
829
830
831
832
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
833
        PIL Image or Tensor: Hue adjusted image.
834
    """
835
836
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
837

838
    return F_t.adjust_hue(img, hue_factor)
839
840


841
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
842
    r"""Perform gamma correction on an image.
843
844
845
846

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

847
848
849
850
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
851

852
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
853
854

    Args:
855
        img (PIL Image or Tensor): PIL Image to be adjusted.
856
857
858
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
859
860
861
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
862
        gain (float): The constant multiplier.
863
864
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
865
    """
866
867
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
868

869
    return F_t.adjust_gamma(img, gamma, gain)
870
871


vfdev's avatar
vfdev committed
872
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
873
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
874
) -> List[float]:
875
876
877
878
879
880
881
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
882
883
884
885
886
887
888
889
890
891
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
892
893
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

894
895
896
897
898
899
900
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
901
902
903
904
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
905
906

    # Inverted rotation matrix with scale and shear
907
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
908
909
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
910
911

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
912
913
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
914
915

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
916
917
    matrix[2] += cx
    matrix[5] += cy
918

vfdev's avatar
vfdev committed
919
    return matrix
920

vfdev's avatar
vfdev committed
921

vfdev's avatar
vfdev committed
922
def rotate(
923
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
924
        expand: bool = False, center: Optional[List[int]] = None,
925
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
926
927
) -> Tensor:
    """Rotate the image by angle.
928
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
929
930
931
932
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
933
        angle (number): rotation angle value in degrees, counter-clockwise.
934
935
936
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
937
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
938
939
940
941
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
942
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
943
            Default is the center of the image.
944
945
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
946
947
948
949

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
vfdev's avatar
vfdev committed
950
951
952
953
954
955
956

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
957
958
959
960
961
962
963
964
965
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
966
967
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
968
969
970
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
971
972
973
974
975
976
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

977
978
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
979

vfdev's avatar
vfdev committed
980
    if not isinstance(img, torch.Tensor):
981
982
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
983
984
985
986

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
987
988
989
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
990
991
992
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
993
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
994
995


vfdev's avatar
vfdev committed
996
997
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
998
999
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
1000
1001
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1002
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1003
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1004
1005

    Args:
vfdev's avatar
vfdev committed
1006
        img (PIL Image or Tensor): image to transform.
1007
1008
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1009
        scale (float): overall scale
1010
1011
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
1012
            the second value corresponds to a shear parallel to the y axis.
1013
1014
1015
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1016
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1017
1018
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1019
1020
1021
1022

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1023
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
1024
            Please use the ``fill`` parameter instead.
1025
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1026
            Please use the ``interpolation`` parameter instead.
vfdev's avatar
vfdev committed
1027
1028
1029

    Returns:
        PIL Image or Tensor: Transformed image.
1030
    """
1031
1032
1033
1034
1035
1036
1037
1038
1039
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1040
1041
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
1042
1043
1044
1045
1046
1047
1048
1049
1050
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1066
1067
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1068

vfdev's avatar
vfdev committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1094
1095
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1096

1097
1098
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1099
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1100
1101


1102
@torch.jit.unused
1103
def to_grayscale(img, num_output_channels=1):
1104
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1105
    This transform does not support torch Tensor.
1106
1107

    Args:
1108
        img (PIL Image): PIL Image to be converted to grayscale.
1109
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1110
1111

    Returns:
1112
1113
        PIL Image: Grayscale version of the image.

1114
1115
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1116
    """
1117
1118
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1119

1120
1121
1122
1123
1124
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1125
1126
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1139
1140
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1141
1142
1143
1144
1145
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1146
1147


1148
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1149
    """ Erase the input Tensor Image with given value.
1150
    This transform does not support PIL Image.
1151
1152
1153
1154
1155
1156
1157
1158

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1159
        inplace(bool, optional): For in-place operations. By default is set False.
1160
1161
1162
1163
1164
1165
1166

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1167
1168
1169
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1170
    img[..., i:i + h, j:j + w] = v
1171
    return img
1172
1173
1174


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1175
1176
1177
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1178
1179
1180
1181
1182

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1183
1184
1185
1186

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1187
1188
1189
1190
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1191
1192
1193
1194
1195
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output
1237
1238
1239


def invert(img: Tensor) -> Tensor:
1240
    """Invert the colors of an RGB/grayscale image.
1241
1242
1243

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1244
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1245
1246
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1258
    """Posterize an image by reducing the number of bits for each color channel.
1259
1260
1261

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1262
            If img is torch Tensor, it should be of type torch.uint8 and
1263
1264
1265
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
    if not (0 <= bits <= 8):
        raise ValueError('The number if bits should be between 0 and 8. Got {}'.format(bits))

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1280
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1281
1282
1283

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1284
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1285
1286
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1298
    """Adjust the sharpness of an image.
1299
1300
1301

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1302
1303
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1318
    """Maximize contrast of an image by remapping its
1319
1320
1321
1322
1323
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1324
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1325
1326
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1338
    """Equalize the histogram of an image by applying
1339
1340
1341
1342
1343
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1344
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1345
            where ... means it can have an arbitrary number of leading dimensions.
1346
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1347
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1348
1349
1350
1351
1352
1353
1354
1355

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)