test_transforms_v2_refactored.py 116 KB
Newer Older
1
import contextlib
2
import decimal
3
import inspect
Philip Meier's avatar
Philip Meier committed
4
import math
5
import pickle
6
import re
7
from pathlib import Path
8
9
10
11
12
13
14
15
16
17
18
19
20
from unittest import mock

import numpy as np
import PIL.Image
import pytest

import torch
import torchvision.transforms.v2 as transforms
from common_utils import (
    assert_equal,
    assert_no_warnings,
    cache,
    cpu_and_cuda,
21
    freeze_rng_state,
22
    ignore_jit_no_profile_information_warning,
23
    make_bounding_boxes,
24
25
    make_detection_mask,
    make_image,
26
27
    make_image_pil,
    make_image_tensor,
28
29
    make_segmentation_mask,
    make_video,
30
    make_video_tensor,
31
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
32
    set_rng_seed,
33
)
34
35

from torch import nn
36
from torch.testing import assert_close
37
from torch.utils._pytree import tree_map
38
from torch.utils.data import DataLoader, default_collate
39
from torchvision import tv_tensors
Philip Meier's avatar
Philip Meier committed
40
41

from torchvision.transforms._functional_tensor import _max_value as get_max_value
42
43
from torchvision.transforms.functional import pil_modes_mapping
from torchvision.transforms.v2 import functional as F
44
from torchvision.transforms.v2.functional._utils import _get_kernel, _register_kernel_internal
45
46


Nicolas Hug's avatar
Nicolas Hug committed
47
48
49
50
51
52
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def _to_tolerances(maybe_tolerance_dict):
    if not isinstance(maybe_tolerance_dict, dict):
        return dict(rtol=None, atol=None)

    tolerances = dict(rtol=0, atol=0)
    tolerances.update(maybe_tolerance_dict)
    return tolerances


def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces closes results for inputs on GPU and CPU."""
    if input.device.type != "cuda":
        return

    input_cuda = input.as_subclass(torch.Tensor)
    input_cpu = input_cuda.to("cpu")

70
71
72
73
    with freeze_rng_state():
        actual = kernel(input_cuda, *args, **kwargs)
    with freeze_rng_state():
        expected = kernel(input_cpu, *args, **kwargs)
74
75
76
77
78

    assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol)


@cache
79
def _script(obj):
80
    try:
81
        return torch.jit.script(obj)
82
    except Exception as error:
83
84
        name = getattr(obj, "__name__", obj.__class__.__name__)
        raise AssertionError(f"Trying to `torch.jit.script` '{name}' raised the error above.") from error
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140


def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel is scriptable and if the scripted output is close to the eager one."""
    if input.device.type != "cpu":
        return

    kernel_scripted = _script(kernel)

    input = input.as_subclass(torch.Tensor)
    with ignore_jit_no_profile_information_warning():
        actual = kernel_scripted(input, *args, **kwargs)
    expected = kernel(input, *args, **kwargs)

    assert_close(actual, expected, rtol=rtol, atol=atol)


def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs):
    """Checks if the kernel produces close results for batched and unbatched inputs."""
    unbatched_input = input.as_subclass(torch.Tensor)

    for batch_dims in [(2,), (2, 1)]:
        repeats = [*batch_dims, *[1] * input.ndim]

        actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs)

        expected = kernel(unbatched_input, *args, **kwargs)
        # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata
        if isinstance(expected, torch.Tensor):
            expected = expected.repeat(repeats)
        else:
            tensor, *metadata = expected
            expected = (tensor.repeat(repeats), *metadata)

        assert_close(actual, expected, rtol=rtol, atol=atol)

    for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]:
        degenerate_batched_input = torch.empty(
            degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device
        )

        output = kernel(degenerate_batched_input, *args, **kwargs)
        # Most kernels just return a tensor, but some also return some additional metadata
        if not isinstance(output, torch.Tensor):
            output, *_ = output

        assert output.shape[: -input.ndim] == degenerate_batch_dims


def check_kernel(
    kernel,
    input,
    *args,
    check_cuda_vs_cpu=True,
    check_scripted_vs_eager=True,
    check_batched_vs_unbatched=True,
141
    expect_same_dtype=True,
142
143
144
145
146
147
148
149
150
151
152
153
    **kwargs,
):
    initial_input_version = input._version

    output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs)
    # Most kernels just return a tensor, but some also return some additional metadata
    if not isinstance(output, torch.Tensor):
        output, *_ = output

    # check that no inplace operation happened
    assert input._version == initial_input_version

154
155
    if expect_same_dtype:
        assert output.dtype == input.dtype
156
157
158
159
160
161
162
163
164
165
166
167
    assert output.device == input.device

    if check_cuda_vs_cpu:
        _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu))

    if check_scripted_vs_eager:
        _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager))

    if check_batched_vs_unbatched:
        _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched))


Nicolas Hug's avatar
Nicolas Hug committed
168
169
def _check_functional_scripted_smoke(functional, input, *args, **kwargs):
    """Checks if the functional can be scripted and the scripted version can be called without error."""
170
    if not isinstance(input, tv_tensors.Image):
171
172
        return

Nicolas Hug's avatar
Nicolas Hug committed
173
    functional_scripted = _script(functional)
174
    with ignore_jit_no_profile_information_warning():
Nicolas Hug's avatar
Nicolas Hug committed
175
        functional_scripted(input.as_subclass(torch.Tensor), *args, **kwargs)
176
177


Nicolas Hug's avatar
Nicolas Hug committed
178
def check_functional(functional, input, *args, check_scripted_smoke=True, **kwargs):
179
    unknown_input = object()
180
    with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))):
Nicolas Hug's avatar
Nicolas Hug committed
181
        functional(unknown_input, *args, **kwargs)
182

183
    with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy:
Nicolas Hug's avatar
Nicolas Hug committed
184
        output = functional(input, *args, **kwargs)
185

Nicolas Hug's avatar
Nicolas Hug committed
186
        spy.assert_any_call(f"{functional.__module__}.{functional.__name__}")
187

188
189
    assert isinstance(output, type(input))

190
    if isinstance(input, tv_tensors.BoundingBoxes):
191
192
        assert output.format == input.format

193
    if check_scripted_smoke:
Nicolas Hug's avatar
Nicolas Hug committed
194
        _check_functional_scripted_smoke(functional, input, *args, **kwargs)
195
196


Nicolas Hug's avatar
Nicolas Hug committed
197
198
199
def check_functional_kernel_signature_match(functional, *, kernel, input_type):
    """Checks if the signature of the functional matches the kernel signature."""
    functional_params = list(inspect.signature(functional).parameters.values())[1:]
200
    kernel_params = list(inspect.signature(kernel).parameters.values())[1:]
201

202
203
    if issubclass(input_type, tv_tensors.TVTensor):
        # We filter out metadata that is implicitly passed to the functional through the input tv_tensor, but has to be
204
        # explicitly passed to the kernel.
205
        explicit_metadata = {
206
            tv_tensors.BoundingBoxes: {"format", "canvas_size"},
207
208
        }
        kernel_params = [param for param in kernel_params if param.name not in explicit_metadata.get(input_type, set())]
209

Nicolas Hug's avatar
Nicolas Hug committed
210
211
    functional_params = iter(functional_params)
    for functional_param, kernel_param in zip(functional_params, kernel_params):
212
        try:
Nicolas Hug's avatar
Nicolas Hug committed
213
214
215
216
            # In general, the functional parameters are a superset of the kernel parameters. Thus, we filter out
            # functional parameters that have no kernel equivalent while keeping the order intact.
            while functional_param.name != kernel_param.name:
                functional_param = next(functional_params)
217
218
219
        except StopIteration:
            raise AssertionError(
                f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` "
Nicolas Hug's avatar
Nicolas Hug committed
220
                f"has no corresponding parameter on the functional `{functional.__name__}`."
221
222
223
224
225
            ) from None

        if issubclass(input_type, PIL.Image.Image):
            # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check
            # them in the first place.
Nicolas Hug's avatar
Nicolas Hug committed
226
            functional_param._annotation = kernel_param._annotation = inspect.Parameter.empty
227

Nicolas Hug's avatar
Nicolas Hug committed
228
        assert functional_param == kernel_param
229
230


231
def _check_transform_v1_compatibility(transform, input, *, rtol, atol):
232
    """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static
233
234
235
    ``get_params`` method that is the v1 equivalent, the output is close to v1, is scriptable, and the scripted version
    can be called without error."""
    if type(input) is not torch.Tensor or isinstance(input, PIL.Image.Image):
236
237
        return

238
239
    v1_transform_cls = transform._v1_transform_cls
    if v1_transform_cls is None:
240
241
        return

242
243
    if hasattr(v1_transform_cls, "get_params"):
        assert type(transform).get_params is v1_transform_cls.get_params
244

245
246
247
248
249
250
251
252
253
    v1_transform = v1_transform_cls(**transform._extract_params_for_v1_transform())

    with freeze_rng_state():
        output_v2 = transform(input)

    with freeze_rng_state():
        output_v1 = v1_transform(input)

    assert_close(output_v2, output_v1, rtol=rtol, atol=atol)
254

255
256
257
258
    if isinstance(input, PIL.Image.Image):
        return

    _script(v1_transform)(input)
259
260


261
def check_transform(transform, input, check_v1_compatibility=True):
262
263
    pickle.loads(pickle.dumps(transform))

264
265
266
    output = transform(input)
    assert isinstance(output, type(input))

267
    if isinstance(input, tv_tensors.BoundingBoxes):
268
269
        assert output.format == input.format

270
271
    if check_v1_compatibility:
        _check_transform_v1_compatibility(transform, input, **_to_tolerances(check_v1_compatibility))
272
273


274
def transform_cls_to_functional(transform_cls, **transform_specific_kwargs):
275
    def wrapper(input, *args, **kwargs):
276
        transform = transform_cls(*args, **transform_specific_kwargs, **kwargs)
277
278
279
280
281
282
283
        return transform(input)

    wrapper.__name__ = transform_cls.__name__

    return wrapper


Philip Meier's avatar
Philip Meier committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
def param_value_parametrization(**kwargs):
    """Helper function to turn

    @pytest.mark.parametrize(
        ("param", "value"),
        ("a", 1),
        ("a", 2),
        ("a", 3),
        ("b", -1.0)
        ("b", 1.0)
    )

    into

    @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0])
    """
    return pytest.mark.parametrize(
        ("param", "value"),
        [(param, value) for param, values in kwargs.items() for value in values],
    )


def adapt_fill(value, *, dtype):
    """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype"""
    if value is None:
        return value

    max_value = get_max_value(dtype)
312
    value_type = float if dtype.is_floating_point else int
Philip Meier's avatar
Philip Meier committed
313
314

    if isinstance(value, (int, float)):
315
        return value_type(value * max_value)
Philip Meier's avatar
Philip Meier committed
316
    elif isinstance(value, (list, tuple)):
317
        return type(value)(value_type(v * max_value) for v in value)
Philip Meier's avatar
Philip Meier committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    else:
        raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.")


EXHAUSTIVE_TYPE_FILLS = [
    None,
    1,
    0.5,
    [1],
    [0.2],
    (0,),
    (0.7,),
    [1, 0, 1],
    [0.1, 0.2, 0.3],
    (0, 1, 0),
    (0.9, 0.234, 0.314),
]
CORRECTNESS_FILLS = [
    v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)
]


340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well
INTERPOLATION_MODES = [
    transforms.InterpolationMode.NEAREST,
    transforms.InterpolationMode.NEAREST_EXACT,
    transforms.InterpolationMode.BILINEAR,
    transforms.InterpolationMode.BICUBIC,
]


@contextlib.contextmanager
def assert_warns_antialias_default_value():
    with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"):
        yield


355
356
357
358
359
360
def reference_affine_bounding_boxes_helper(bounding_boxes, *, affine_matrix, new_canvas_size=None, clamp=True):
    format = bounding_boxes.format
    canvas_size = new_canvas_size or bounding_boxes.canvas_size

    def affine_bounding_boxes(bounding_boxes):
        dtype = bounding_boxes.dtype
361
        device = bounding_boxes.device
362

363
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
364
        input_xyxy = F.convert_bounding_box_format(
365
            bounding_boxes.to(dtype=torch.float64, device="cpu", copy=True),
366
            old_format=format,
367
            new_format=tv_tensors.BoundingBoxFormat.XYXY,
368
369
            inplace=True,
        )
370
371
        x1, y1, x2, y2 = input_xyxy.squeeze(0).tolist()

372
373
        points = np.array(
            [
374
375
376
377
                [x1, y1, 1.0],
                [x2, y1, 1.0],
                [x1, y2, 1.0],
                [x2, y2, 1.0],
378
379
            ]
        )
380
381
382
        transformed_points = np.matmul(points, affine_matrix.astype(points.dtype).T)

        output_xyxy = torch.Tensor(
383
            [
384
385
386
387
388
                float(np.min(transformed_points[:, 0])),
                float(np.min(transformed_points[:, 1])),
                float(np.max(transformed_points[:, 0])),
                float(np.max(transformed_points[:, 1])),
            ]
389
        )
390
391

        output = F.convert_bounding_box_format(
392
            output_xyxy, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format
393
394
        )

395
396
397
398
399
400
        if clamp:
            # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
            output = F.clamp_bounding_boxes(
                output,
                format=format,
                canvas_size=canvas_size,
401
402
403
404
405
            )
        else:
            # We leave the bounding box as float64 so the caller gets the full precision to perform any additional
            # operation
            dtype = output.dtype
406

407
        return output.to(dtype=dtype, device=device)
408

409
    return tv_tensors.BoundingBoxes(
410
411
412
413
414
415
        torch.cat([affine_bounding_boxes(b) for b in bounding_boxes.reshape(-1, 4).unbind()], dim=0).reshape(
            bounding_boxes.shape
        ),
        format=format,
        canvas_size=canvas_size,
    )
416
417


418
419
420
421
# turns all warnings into errors for this module
pytestmark = pytest.mark.filterwarnings("error")


422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
class TestResize:
    INPUT_SIZE = (17, 11)
    OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)]

    def _make_max_size_kwarg(self, *, use_max_size, size):
        if use_max_size:
            if not (isinstance(size, int) or len(size) == 1):
                # This would result in an `ValueError`
                return None

            max_size = (size if isinstance(size, int) else size[0]) + 1
        else:
            max_size = None

        return dict(max_size=max_size)

    def _compute_output_size(self, *, input_size, size, max_size):
        if not (isinstance(size, int) or len(size) == 1):
            return tuple(size)

        if not isinstance(size, int):
            size = size[0]

        old_height, old_width = input_size
        ratio = old_width / old_height
        if ratio > 1:
            new_height = size
            new_width = int(ratio * new_height)
        else:
            new_width = size
            new_height = int(new_width / ratio)

        if max_size is not None and max(new_height, new_width) > max_size:
            # Need to recompute the aspect ratio, since it might have changed due to rounding
            ratio = new_width / new_height
            if ratio > 1:
                new_width = max_size
                new_height = int(new_width / ratio)
            else:
                new_height = max_size
                new_width = int(new_height * ratio)

        return new_height, new_width

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
472
    def test_kernel_image(self, size, interpolation, use_max_size, antialias, dtype, device):
473
474
475
476
477
478
479
480
481
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

        # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA.
        # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that.
        atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1
        check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol)

        check_kernel(
482
            F.resize_image,
483
            make_image(self.INPUT_SIZE, dtype=dtype, device=device),
484
485
486
487
488
489
490
491
            size=size,
            interpolation=interpolation,
            **max_size_kwarg,
            antialias=antialias,
            check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances,
            check_scripted_vs_eager=not isinstance(size, int),
        )

492
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
493
494
495
496
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
497
    def test_kernel_bounding_boxes(self, format, size, use_max_size, dtype, device):
498
499
500
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

501
        bounding_boxes = make_bounding_boxes(
502
            format=format,
Philip Meier's avatar
Philip Meier committed
503
            canvas_size=self.INPUT_SIZE,
504
505
            dtype=dtype,
            device=device,
Philip Meier's avatar
Philip Meier committed
506
        )
507
        check_kernel(
508
509
            F.resize_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
510
            canvas_size=bounding_boxes.canvas_size,
511
512
513
514
515
            size=size,
            **max_size_kwarg,
            check_scripted_vs_eager=not isinstance(size, int),
        )

516
517
518
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1])
519
520

    def test_kernel_video(self):
521
        check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True)
522
523
524

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
525
        "make_input",
526
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
527
    )
Nicolas Hug's avatar
Nicolas Hug committed
528
529
    def test_functional(self, size, make_input):
        check_functional(
530
            F.resize,
531
            make_input(self.INPUT_SIZE),
532
533
534
535
536
537
            size=size,
            antialias=True,
            check_scripted_smoke=not isinstance(size, int),
        )

    @pytest.mark.parametrize(
538
        ("kernel", "input_type"),
539
        [
540
541
            (F.resize_image, torch.Tensor),
            (F._resize_image_pil, PIL.Image.Image),
542
543
544
545
            (F.resize_image, tv_tensors.Image),
            (F.resize_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.resize_mask, tv_tensors.Mask),
            (F.resize_video, tv_tensors.Video),
546
547
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
548
549
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.resize, kernel=kernel, input_type=input_type)
550
551
552
553

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize(
554
555
556
557
558
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
559
            make_bounding_boxes,
560
561
562
563
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
564
    )
565
    def test_transform(self, size, device, make_input):
566
567
568
569
570
571
        check_transform(
            transforms.Resize(size=size, antialias=True),
            make_input(self.INPUT_SIZE, device=device),
            # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
            check_v1_compatibility=dict(rtol=0, atol=1),
        )
572
573

    def _check_output_size(self, input, output, *, size, max_size):
Philip Meier's avatar
Philip Meier committed
574
575
        assert tuple(F.get_size(output)) == self._compute_output_size(
            input_size=F.get_size(input), size=size, max_size=max_size
576
577
578
579
580
581
582
583
584
585
586
587
        )

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2.
    # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT`
    @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST})
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
    def test_image_correctness(self, size, interpolation, use_max_size, fn):
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

588
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8)
589
590

        actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True)
591
        expected = F.to_image(F.resize(F.to_pil_image(image), size=size, interpolation=interpolation, **max_size_kwarg))
592
593
594
595

        self._check_output_size(image, actual, size=size, **max_size_kwarg)
        torch.testing.assert_close(actual, expected, atol=1, rtol=0)

596
    def _reference_resize_bounding_boxes(self, bounding_boxes, *, size, max_size=None):
Philip Meier's avatar
Philip Meier committed
597
        old_height, old_width = bounding_boxes.canvas_size
598
        new_height, new_width = self._compute_output_size(
Philip Meier's avatar
Philip Meier committed
599
            input_size=bounding_boxes.canvas_size, size=size, max_size=max_size
600
601
602
        )

        if (old_height, old_width) == (new_height, new_width):
603
            return bounding_boxes
604
605
606
607
608
609
610
611

        affine_matrix = np.array(
            [
                [new_width / old_width, 0, 0],
                [0, new_height / old_height, 0],
            ],
        )

612
        return reference_affine_bounding_boxes_helper(
613
            bounding_boxes,
614
            affine_matrix=affine_matrix,
615
            new_canvas_size=(new_height, new_width),
616
617
        )

618
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
619
620
621
    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize("use_max_size", [True, False])
    @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)])
622
    def test_bounding_boxes_correctness(self, format, size, use_max_size, fn):
623
624
625
        if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)):
            return

626
        bounding_boxes = make_bounding_boxes(format=format, canvas_size=self.INPUT_SIZE)
627

628
629
        actual = fn(bounding_boxes, size=size, **max_size_kwarg)
        expected = self._reference_resize_bounding_boxes(bounding_boxes, size=size, **max_size_kwarg)
630

631
        self._check_output_size(bounding_boxes, actual, size=size, **max_size_kwarg)
632
633
634
635
        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES))
    @pytest.mark.parametrize(
636
637
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
638
    )
639
640
    def test_pil_interpolation_compat_smoke(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)
641
642
643
644
645
646
647
648
649
650
651
652
653

        with (
            contextlib.nullcontext()
            if isinstance(input, PIL.Image.Image)
            # This error is triggered in PyTorch core
            else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}")
        ):
            F.resize(
                input,
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )

Nicolas Hug's avatar
Nicolas Hug committed
654
    def test_functional_pil_antialias_warning(self):
655
        with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"):
656
            F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False)
657
658
659

    @pytest.mark.parametrize("size", OUTPUT_SIZES)
    @pytest.mark.parametrize(
660
661
662
663
664
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
665
            make_bounding_boxes,
666
667
668
669
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
670
    )
671
    def test_max_size_error(self, size, make_input):
672
673
674
675
676
677
678
679
680
        if isinstance(size, int) or len(size) == 1:
            max_size = (size if isinstance(size, int) else size[0]) - 1
            match = "must be strictly greater than the requested size"
        else:
            # value can be anything other than None
            max_size = -1
            match = "size should be an int or a sequence of length 1"

        with pytest.raises(ValueError, match=match):
681
            F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True)
682
683
684

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
685
686
        "make_input",
        [make_image_tensor, make_image, make_video],
687
    )
688
    def test_antialias_warning(self, interpolation, make_input):
689
690
691
692
693
        with (
            assert_warns_antialias_default_value()
            if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC}
            else assert_no_warnings()
        ):
Philip Meier's avatar
Philip Meier committed
694
            F.resize(
695
                make_input(self.INPUT_SIZE),
Philip Meier's avatar
Philip Meier committed
696
697
698
                size=self.OUTPUT_SIZES[0],
                interpolation=interpolation,
            )
699
700
701

    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize(
702
703
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
704
    )
705
706
707
    def test_interpolation_int(self, interpolation, make_input):
        input = make_input(self.INPUT_SIZE)

708
709
710
        # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to
        # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a
        # difference and thus we don't test it here.
711
        if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT:
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
            return

        expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True)
        actual = F.resize(
            input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True
        )

        assert_equal(actual, expected)

    def test_transform_unknown_size_error(self):
        with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"):
            transforms.Resize(size=object())

    @pytest.mark.parametrize(
        "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)]
    )
    @pytest.mark.parametrize(
729
730
731
732
733
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
734
            make_bounding_boxes,
735
736
737
738
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
739
    )
740
741
    def test_noop(self, size, make_input):
        input = make_input(self.INPUT_SIZE)
742

Philip Meier's avatar
Philip Meier committed
743
        output = F.resize(input, size=F.get_size(input), antialias=True)
744
745
746

        # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there
        # is a good reason to break this, feel free to downgrade to an equality check.
747
        if isinstance(input, tv_tensors.TVTensor):
748
            # We can't test identity directly, since that checks for the identity of the Python object. Since all
749
            # tv_tensors unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check
750
751
752
753
754
755
            # that the underlying storage is the same
            assert output.data_ptr() == input.data_ptr()
        else:
            assert output is input

    @pytest.mark.parametrize(
756
757
758
759
760
        "make_input",
        [
            make_image_tensor,
            make_image_pil,
            make_image,
761
            make_bounding_boxes,
762
763
764
765
            make_segmentation_mask,
            make_detection_mask,
            make_video,
        ],
766
    )
767
    def test_no_regression_5405(self, make_input):
768
769
770
        # Checks that `max_size` is not ignored if `size == small_edge_size`
        # See https://github.com/pytorch/vision/issues/5405

771
        input = make_input(self.INPUT_SIZE)
772

Philip Meier's avatar
Philip Meier committed
773
        size = min(F.get_size(input))
774
775
776
        max_size = size + 1
        output = F.resize(input, size=size, max_size=max_size, antialias=True)

Philip Meier's avatar
Philip Meier committed
777
        assert max(F.get_size(output)) == max_size
778

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    def _make_image(self, *args, batch_dims=(), memory_format=torch.contiguous_format, **kwargs):
        # torch.channels_last memory_format is only available for 4D tensors, i.e. (B, C, H, W). However, images coming
        # from PIL or our own I/O functions do not have a batch dimensions and are thus 3D, i.e. (C, H, W). Still, the
        # layout of the data in memory is channels last. To emulate this when a 3D input is requested here, we create
        # the image as 4D and create a view with the right shape afterwards. With this the layout in memory is channels
        # last although PyTorch doesn't recognizes it as such.
        emulate_channels_last = memory_format is torch.channels_last and len(batch_dims) != 1

        image = make_image(
            *args,
            batch_dims=(math.prod(batch_dims),) if emulate_channels_last else batch_dims,
            memory_format=memory_format,
            **kwargs,
        )

        if emulate_channels_last:
795
            image = tv_tensors.wrap(image.view(*batch_dims, *image.shape[-3:]), like=image)
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

        return image

    def _check_stride(self, image, *, memory_format):
        C, H, W = F.get_dimensions(image)
        if memory_format is torch.contiguous_format:
            expected_stride = (H * W, W, 1)
        elif memory_format is torch.channels_last:
            expected_stride = (1, W * C, C)
        else:
            raise ValueError(f"Unknown memory_format: {memory_format}")

        assert image.stride() == expected_stride

    # TODO: We can remove this test and related torchvision workaround
    #  once we fixed related pytorch issue: https://github.com/pytorch/pytorch/issues/68430
    @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES)
    @pytest.mark.parametrize("antialias", [True, False])
    @pytest.mark.parametrize("memory_format", [torch.contiguous_format, torch.channels_last])
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_memory_format_consistency(self, interpolation, antialias, memory_format, dtype, device):
        size = self.OUTPUT_SIZES[0]

        input = self._make_image(self.INPUT_SIZE, dtype=dtype, device=device, memory_format=memory_format)

        # Smoke test to make sure we aren't starting with wrong assumptions
        self._check_stride(input, memory_format=memory_format)

        output = F.resize_image(input, size=size, interpolation=interpolation, antialias=antialias)

        self._check_stride(output, memory_format=memory_format)

    def test_float16_no_rounding(self):
        # Make sure Resize() doesn't round float16 images
        # Non-regression test for https://github.com/pytorch/vision/issues/7667

        input = make_image_tensor(self.INPUT_SIZE, dtype=torch.float16)
834
        output = F.resize_image(input, size=self.OUTPUT_SIZES[0], antialias=True)
835
836
837
838

        assert output.dtype is torch.float16
        assert (output.round() - output).abs().sum() > 0

839
840
841
842

class TestHorizontalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
843
    def test_kernel_image(self, dtype, device):
844
        check_kernel(F.horizontal_flip_image, make_image(dtype=dtype, device=device))
845

846
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
847
848
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
849
    def test_kernel_bounding_boxes(self, format, dtype, device):
850
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
851
        check_kernel(
852
853
            F.horizontal_flip_bounding_boxes,
            bounding_boxes,
854
            format=format,
Philip Meier's avatar
Philip Meier committed
855
            canvas_size=bounding_boxes.canvas_size,
856
857
        )

858
859
860
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.horizontal_flip_mask, make_mask())
861
862

    def test_kernel_video(self):
863
        check_kernel(F.horizontal_flip_video, make_video())
864
865

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
866
        "make_input",
867
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
868
    )
Nicolas Hug's avatar
Nicolas Hug committed
869
870
    def test_functional(self, make_input):
        check_functional(F.horizontal_flip, make_input())
871
872

    @pytest.mark.parametrize(
873
        ("kernel", "input_type"),
874
        [
875
876
            (F.horizontal_flip_image, torch.Tensor),
            (F._horizontal_flip_image_pil, PIL.Image.Image),
877
878
879
880
            (F.horizontal_flip_image, tv_tensors.Image),
            (F.horizontal_flip_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.horizontal_flip_mask, tv_tensors.Mask),
            (F.horizontal_flip_video, tv_tensors.Video),
881
882
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
883
884
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.horizontal_flip, kernel=kernel, input_type=input_type)
885
886

    @pytest.mark.parametrize(
887
        "make_input",
888
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
889
890
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
891
    def test_transform(self, make_input, device):
892
        check_transform(transforms.RandomHorizontalFlip(p=1), make_input(device=device))
893
894
895
896
897

    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
    def test_image_correctness(self, fn):
898
        image = make_image(dtype=torch.uint8, device="cpu")
899
900

        actual = fn(image)
901
        expected = F.to_image(F.horizontal_flip(F.to_pil_image(image)))
902
903
904

        torch.testing.assert_close(actual, expected)

905
    def _reference_horizontal_flip_bounding_boxes(self, bounding_boxes):
906
907
        affine_matrix = np.array(
            [
Philip Meier's avatar
Philip Meier committed
908
                [-1, 0, bounding_boxes.canvas_size[1]],
909
910
911
912
                [0, 1, 0],
            ],
        )

913
        return reference_affine_bounding_boxes_helper(bounding_boxes, affine_matrix=affine_matrix)
914

915
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
916
917
918
    @pytest.mark.parametrize(
        "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)]
    )
919
    def test_bounding_boxes_correctness(self, format, fn):
920
        bounding_boxes = make_bounding_boxes(format=format)
921

922
923
        actual = fn(bounding_boxes)
        expected = self._reference_horizontal_flip_bounding_boxes(bounding_boxes)
924
925
926
927

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
928
        "make_input",
929
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
930
931
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
932
933
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
934
935
936
937
938
939

        transform = transforms.RandomHorizontalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982


class TestAffine:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)],
        # float
        scale=[0.5],
        # float, int,
        # one-list of float, one-list of int, one-tuple of float, one-tuple of int
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    # The special case for shear makes sure we pick a value that is supported while JIT scripting
    _MINIMAL_AFFINE_KWARGS = {
        k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list))
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
        translate=[None, (0.5, 0.5)],
        scale=[None, (0.75, 1.25)],
        shear=[None, (12, 30, -17, 5), 10, (-5, 12)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {
        k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()
    }

    def _check_kernel(self, kernel, input, *args, **kwargs):
        kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy()
        kwargs_.update(kwargs)
        check_kernel(kernel, input, *args, **kwargs_)

Philip Meier's avatar
Philip Meier committed
983
984
985
986
987
988
989
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
Philip Meier's avatar
Philip Meier committed
990
991
992
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
993
    def test_kernel_image(self, param, value, dtype, device):
Philip Meier's avatar
Philip Meier committed
994
        if param == "fill":
Philip Meier's avatar
Philip Meier committed
995
            value = adapt_fill(value, dtype=dtype)
Philip Meier's avatar
Philip Meier committed
996
        self._check_kernel(
997
            F.affine_image,
998
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
999
1000
1001
1002
1003
1004
1005
            **{param: value},
            check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))),
            check_cuda_vs_cpu=dict(atol=1, rtol=0)
            if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR
            else True,
        )

Philip Meier's avatar
Philip Meier committed
1006
1007
1008
1009
1010
    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"],
        shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
Philip Meier's avatar
Philip Meier committed
1011
    )
1012
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1013
1014
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1015
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
1016
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1017
        self._check_kernel(
1018
1019
            F.affine_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1020
            format=format,
Philip Meier's avatar
Philip Meier committed
1021
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1022
1023
1024
1025
            **{param: value},
            check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))),
        )

1026
1027
1028
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        self._check_kernel(F.affine_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1029
1030

    def test_kernel_video(self):
1031
        self._check_kernel(F.affine_video, make_video())
Philip Meier's avatar
Philip Meier committed
1032
1033

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1034
        "make_input",
1035
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1036
    )
Nicolas Hug's avatar
Nicolas Hug committed
1037
1038
    def test_functional(self, make_input):
        check_functional(F.affine, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1039
1040

    @pytest.mark.parametrize(
1041
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1042
        [
1043
1044
            (F.affine_image, torch.Tensor),
            (F._affine_image_pil, PIL.Image.Image),
1045
1046
1047
1048
            (F.affine_image, tv_tensors.Image),
            (F.affine_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.affine_mask, tv_tensors.Mask),
            (F.affine_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1049
1050
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1051
1052
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.affine, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1053
1054

    @pytest.mark.parametrize(
1055
        "make_input",
1056
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1057
1058
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1059
1060
    def test_transform(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1061

1062
        check_transform(transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES), input)
Philip Meier's avatar
Philip Meier committed
1063
1064
1065
1066
1067
1068
1069
1070
1071

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1072
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1073
    def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill):
1074
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1075

Philip Meier's avatar
Philip Meier committed
1076
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087

        actual = F.affine(
            image,
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
            interpolation=interpolation,
            fill=fill,
        )
1088
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
1089
            F.affine(
1090
                F.to_pil_image(image),
Philip Meier's avatar
Philip Meier committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
                angle=angle,
                translate=translate,
                scale=scale,
                shear=shear,
                center=center,
                interpolation=interpolation,
                fill=fill,
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
Philip Meier's avatar
Philip Meier committed
1108
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
Philip Meier's avatar
Philip Meier committed
1109
1110
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, fill, seed):
1111
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1112

Philip Meier's avatar
Philip Meier committed
1113
        fill = adapt_fill(fill, dtype=torch.uint8)
Philip Meier's avatar
Philip Meier committed
1114
1115
1116
1117
1118
1119
1120
1121
1122

        transform = transforms.RandomAffine(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1123
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8

    def _compute_affine_matrix(self, *, angle, translate, scale, shear, center):
        rot = math.radians(angle)
        cx, cy = center
        tx, ty = translate
        sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)]

        c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
        c_matrix_inv = np.linalg.inv(c_matrix)
        rs_matrix = np.array(
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
        shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
        shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
        rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix))
        true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv)))
1148
        return true_matrix[:2, :]
Philip Meier's avatar
Philip Meier committed
1149

1150
    def _reference_affine_bounding_boxes(self, bounding_boxes, *, angle, translate, scale, shear, center):
Philip Meier's avatar
Philip Meier committed
1151
        if center is None:
Philip Meier's avatar
Philip Meier committed
1152
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
Philip Meier's avatar
Philip Meier committed
1153

1154
        return reference_affine_bounding_boxes_helper(
1155
            bounding_boxes,
1156
1157
1158
            affine_matrix=self._compute_affine_matrix(
                angle=angle, translate=translate, scale=scale, shear=shear, center=center
            ),
Philip Meier's avatar
Philip Meier committed
1159
1160
        )

1161
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1162
1163
1164
1165
1166
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"])
    @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"])
    @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1167
    def test_functional_bounding_boxes_correctness(self, format, angle, translate, scale, shear, center):
1168
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1169
1170

        actual = F.affine(
1171
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1172
1173
1174
1175
1176
1177
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )
1178
1179
        expected = self._reference_affine_bounding_boxes(
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
            angle=angle,
            translate=translate,
            scale=scale,
            shear=shear,
            center=center,
        )

        torch.testing.assert_close(actual, expected)

1189
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1190
1191
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1192
    def test_transform_bounding_boxes_correctness(self, format, center, seed):
1193
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1194
1195
1196
1197

        transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center)

        torch.manual_seed(seed)
1198
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1199
1200

        torch.manual_seed(seed)
1201
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1202

1203
        expected = self._reference_affine_bounding_boxes(bounding_boxes, **params, center=center)
Philip Meier's avatar
Philip Meier committed
1204
1205
1206
1207
1208
1209
1210
1211
1212

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"])
    @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"])
    @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed):
1213
        image = make_image()
Philip Meier's avatar
Philip Meier committed
1214
        height, width = F.get_size(image)
Philip Meier's avatar
Philip Meier committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

        transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)

        torch.manual_seed(seed)
        params = transform._get_params([image])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

        if translate is not None:
            width_max = int(round(translate[0] * width))
            height_max = int(round(translate[1] * height))
            assert -width_max <= params["translate"][0] <= width_max
            assert -height_max <= params["translate"][1] <= height_max
        else:
            assert params["translate"] == (0, 0)

        if scale is not None:
            assert scale[0] <= params["scale"] <= scale[1]
        else:
            assert params["scale"] == 1.0

        if shear is not None:
            if isinstance(shear, (int, float)):
                assert -shear <= params["shear"][0] <= shear
                assert params["shear"][1] == 0.0
            elif len(shear) == 2:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert params["shear"][1] == 0.0
            elif len(shear) == 4:
                assert shear[0] <= params["shear"][0] <= shear[1]
                assert shear[2] <= params["shear"][1] <= shear[3]
        else:
            assert params["shear"] == (0, 0)

    @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param in {"degrees", "shear"} and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomAffine(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]])
    def test_transform_translate_range_error(self, translate):
        with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
            transforms.RandomAffine(degrees=0, translate=translate)

    @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]])
    def test_transform_scale_range_error(self, scale):
        with pytest.raises(ValueError, match="scale values should be positive"):
            transforms.RandomAffine(degrees=0, scale=scale)

    def test_transform_negative_shear_error(self):
        with pytest.raises(ValueError, match="If shear is a single number, it must be positive"):
            transforms.RandomAffine(degrees=0, shear=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
Philip Meier's avatar
Philip Meier committed
1288
1289
1290
1291
1292


class TestVerticalFlip:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1293
    def test_kernel_image(self, dtype, device):
1294
        check_kernel(F.vertical_flip_image, make_image(dtype=dtype, device=device))
Philip Meier's avatar
Philip Meier committed
1295

1296
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1297
1298
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1299
    def test_kernel_bounding_boxes(self, format, dtype, device):
1300
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1301
        check_kernel(
1302
1303
            F.vertical_flip_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1304
            format=format,
Philip Meier's avatar
Philip Meier committed
1305
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1306
1307
        )

1308
1309
1310
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.vertical_flip_mask, make_mask())
Philip Meier's avatar
Philip Meier committed
1311
1312

    def test_kernel_video(self):
1313
        check_kernel(F.vertical_flip_video, make_video())
Philip Meier's avatar
Philip Meier committed
1314
1315

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1316
        "make_input",
1317
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1318
    )
Nicolas Hug's avatar
Nicolas Hug committed
1319
1320
    def test_functional(self, make_input):
        check_functional(F.vertical_flip, make_input())
Philip Meier's avatar
Philip Meier committed
1321
1322

    @pytest.mark.parametrize(
1323
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1324
        [
1325
1326
            (F.vertical_flip_image, torch.Tensor),
            (F._vertical_flip_image_pil, PIL.Image.Image),
1327
1328
1329
1330
            (F.vertical_flip_image, tv_tensors.Image),
            (F.vertical_flip_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.vertical_flip_mask, tv_tensors.Mask),
            (F.vertical_flip_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1331
1332
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1333
1334
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.vertical_flip, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1335
1336

    @pytest.mark.parametrize(
1337
        "make_input",
1338
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1339
1340
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1341
    def test_transform(self, make_input, device):
1342
        check_transform(transforms.RandomVerticalFlip(p=1), make_input(device=device))
Philip Meier's avatar
Philip Meier committed
1343
1344
1345

    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
    def test_image_correctness(self, fn):
1346
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1347
1348

        actual = fn(image)
1349
        expected = F.to_image(F.vertical_flip(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1350
1351
1352

        torch.testing.assert_close(actual, expected)

1353
    def _reference_vertical_flip_bounding_boxes(self, bounding_boxes):
Philip Meier's avatar
Philip Meier committed
1354
1355
1356
        affine_matrix = np.array(
            [
                [1, 0, 0],
Philip Meier's avatar
Philip Meier committed
1357
                [0, -1, bounding_boxes.canvas_size[0]],
Philip Meier's avatar
Philip Meier committed
1358
1359
1360
            ],
        )

1361
        return reference_affine_bounding_boxes_helper(bounding_boxes, affine_matrix=affine_matrix)
Philip Meier's avatar
Philip Meier committed
1362

1363
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1364
    @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)])
1365
    def test_bounding_boxes_correctness(self, format, fn):
1366
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1367

1368
1369
        actual = fn(bounding_boxes)
        expected = self._reference_vertical_flip_bounding_boxes(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1370
1371
1372
1373

        torch.testing.assert_close(actual, expected)

    @pytest.mark.parametrize(
1374
        "make_input",
1375
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1376
1377
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1378
1379
    def test_transform_noop(self, make_input, device):
        input = make_input(device=device)
Philip Meier's avatar
Philip Meier committed
1380
1381
1382
1383
1384
1385

        transform = transforms.RandomVerticalFlip(p=0)

        output = transform(input)

        assert_equal(output, input)
Philip Meier's avatar
Philip Meier committed
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415


class TestRotate:
    _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict(
        # float, int
        angle=[-10.9, 18],
        # None
        # two-list of float, two-list of int, two-tuple of float, two-tuple of int
        center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)],
    )
    _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()}
    _CORRECTNESS_AFFINE_KWARGS = {
        k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)]
        for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()
    }

    _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict(
        degrees=[30, (-15, 20)],
    )
    _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()}

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1416
    def test_kernel_image(self, param, value, dtype, device):
Philip Meier's avatar
Philip Meier committed
1417
1418
1419
1420
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]
        check_kernel(
1421
            F.rotate_image,
1422
            make_image(dtype=dtype, device=device),
Philip Meier's avatar
Philip Meier committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
            **kwargs,
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

    @param_value_parametrization(
        angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"],
        expand=[False, True],
        center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"],
    )
1432
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1433
1434
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
1435
    def test_kernel_bounding_boxes(self, param, value, format, dtype, device):
Philip Meier's avatar
Philip Meier committed
1436
1437
1438
1439
        kwargs = {param: value}
        if param != "angle":
            kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"]

1440
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
1441
1442

        check_kernel(
1443
1444
            F.rotate_bounding_boxes,
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1445
            format=format,
Philip Meier's avatar
Philip Meier committed
1446
            canvas_size=bounding_boxes.canvas_size,
Philip Meier's avatar
Philip Meier committed
1447
1448
1449
            **kwargs,
        )

1450
1451
1452
    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1453
1454

    def test_kernel_video(self):
1455
        check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1456
1457

    @pytest.mark.parametrize(
Philip Meier's avatar
Philip Meier committed
1458
        "make_input",
1459
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1460
    )
Nicolas Hug's avatar
Nicolas Hug committed
1461
1462
    def test_functional(self, make_input):
        check_functional(F.rotate, make_input(), **self._MINIMAL_AFFINE_KWARGS)
Philip Meier's avatar
Philip Meier committed
1463
1464

    @pytest.mark.parametrize(
1465
        ("kernel", "input_type"),
Philip Meier's avatar
Philip Meier committed
1466
        [
1467
1468
            (F.rotate_image, torch.Tensor),
            (F._rotate_image_pil, PIL.Image.Image),
1469
1470
1471
1472
            (F.rotate_image, tv_tensors.Image),
            (F.rotate_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.rotate_mask, tv_tensors.Mask),
            (F.rotate_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
1473
1474
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1475
1476
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.rotate, kernel=kernel, input_type=input_type)
Philip Meier's avatar
Philip Meier committed
1477
1478

    @pytest.mark.parametrize(
1479
        "make_input",
1480
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
1481
1482
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
1483
1484
    def test_transform(self, make_input, device):
        check_transform(
1485
            transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES), make_input(device=device)
1486
        )
Philip Meier's avatar
Philip Meier committed
1487
1488
1489
1490
1491
1492
1493
1494
1495

    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    def test_functional_image_correctness(self, angle, center, interpolation, expand, fill):
1496
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1497
1498
1499
1500

        fill = adapt_fill(fill, dtype=torch.uint8)

        actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill)
1501
        expected = F.to_image(
Philip Meier's avatar
Philip Meier committed
1502
            F.rotate(
1503
                F.to_pil_image(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill
Philip Meier's avatar
Philip Meier committed
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
            )
        )

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize(
        "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
    )
    @pytest.mark.parametrize("expand", [False, True])
    @pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, center, interpolation, expand, fill, seed):
1518
        image = make_image(dtype=torch.uint8, device="cpu")
Philip Meier's avatar
Philip Meier committed
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533

        fill = adapt_fill(fill, dtype=torch.uint8)

        transform = transforms.RandomRotation(
            **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES,
            center=center,
            interpolation=interpolation,
            expand=expand,
            fill=fill,
        )

        torch.manual_seed(seed)
        actual = transform(image)

        torch.manual_seed(seed)
1534
        expected = F.to_image(transform(F.to_pil_image(image)))
Philip Meier's avatar
Philip Meier committed
1535
1536
1537
1538

        mae = (actual.float() - expected.float()).abs().mean()
        assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6

1539
1540
1541
1542
1543
    def _compute_output_canvas_size(self, *, expand, canvas_size, affine_matrix):
        if not expand:
            return canvas_size, (0.0, 0.0)

        input_height, input_width = canvas_size
Philip Meier's avatar
Philip Meier committed
1544

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
        input_image_frame = np.array(
            [
                [0.0, 0.0, 1.0],
                [0.0, input_height, 1.0],
                [input_width, input_height, 1.0],
                [input_width, 0.0, 1.0],
            ],
            dtype=np.float64,
        )
        output_image_frame = np.matmul(input_image_frame, affine_matrix.astype(input_image_frame.dtype).T)

        recenter_x = float(np.min(output_image_frame[:, 0]))
        recenter_y = float(np.min(output_image_frame[:, 1]))

        output_width = int(np.max(output_image_frame[:, 0]) - recenter_x)
        output_height = int(np.max(output_image_frame[:, 1]) - recenter_y)

        return (output_height, output_width), (recenter_x, recenter_y)

    def _recenter_bounding_boxes_after_expand(self, bounding_boxes, *, recenter_xy):
        x, y = recenter_xy
1566
        if bounding_boxes.format is tv_tensors.BoundingBoxFormat.XYXY:
1567
1568
1569
            translate = [x, y, x, y]
        else:
            translate = [x, y, 0.0, 0.0]
1570
        return tv_tensors.wrap(
1571
1572
1573
1574
            (bounding_boxes.to(torch.float64) - torch.tensor(translate)).to(bounding_boxes.dtype), like=bounding_boxes
        )

    def _reference_rotate_bounding_boxes(self, bounding_boxes, *, angle, expand, center):
Philip Meier's avatar
Philip Meier committed
1575
        if center is None:
Philip Meier's avatar
Philip Meier committed
1576
            center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]]
1577
        cx, cy = center
Philip Meier's avatar
Philip Meier committed
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587

        a = np.cos(angle * np.pi / 180.0)
        b = np.sin(angle * np.pi / 180.0)
        affine_matrix = np.array(
            [
                [a, b, cx - cx * a - b * cy],
                [-b, a, cy + cx * b - a * cy],
            ],
        )

1588
1589
1590
1591
1592
        new_canvas_size, recenter_xy = self._compute_output_canvas_size(
            expand=expand, canvas_size=bounding_boxes.canvas_size, affine_matrix=affine_matrix
        )

        output = reference_affine_bounding_boxes_helper(
1593
            bounding_boxes,
Philip Meier's avatar
Philip Meier committed
1594
            affine_matrix=affine_matrix,
1595
1596
            new_canvas_size=new_canvas_size,
            clamp=False,
Philip Meier's avatar
Philip Meier committed
1597
1598
        )

1599
1600
1601
        return F.clamp_bounding_boxes(self._recenter_bounding_boxes_after_expand(output, recenter_xy=recenter_xy)).to(
            bounding_boxes
        )
Philip Meier's avatar
Philip Meier committed
1602

1603
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
1604
    @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"])
1605
    @pytest.mark.parametrize("expand", [False, True])
Philip Meier's avatar
Philip Meier committed
1606
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
1607
    def test_functional_bounding_boxes_correctness(self, format, angle, expand, center):
1608
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1609

1610
1611
        actual = F.rotate(bounding_boxes, angle=angle, expand=expand, center=center)
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, angle=angle, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1612
1613

        torch.testing.assert_close(actual, expected)
1614
        torch.testing.assert_close(F.get_size(actual), F.get_size(expected), atol=2 if expand else 0, rtol=0)
Philip Meier's avatar
Philip Meier committed
1615

1616
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
1617
    @pytest.mark.parametrize("expand", [False, True])
Philip Meier's avatar
Philip Meier committed
1618
1619
    @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"])
    @pytest.mark.parametrize("seed", list(range(5)))
1620
    def test_transform_bounding_boxes_correctness(self, format, expand, center, seed):
1621
        bounding_boxes = make_bounding_boxes(format=format)
Philip Meier's avatar
Philip Meier committed
1622
1623
1624
1625

        transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center)

        torch.manual_seed(seed)
1626
        params = transform._get_params([bounding_boxes])
Philip Meier's avatar
Philip Meier committed
1627
1628

        torch.manual_seed(seed)
1629
        actual = transform(bounding_boxes)
Philip Meier's avatar
Philip Meier committed
1630

1631
        expected = self._reference_rotate_bounding_boxes(bounding_boxes, **params, expand=expand, center=center)
Philip Meier's avatar
Philip Meier committed
1632
1633

        torch.testing.assert_close(actual, expected)
1634
        torch.testing.assert_close(F.get_size(actual), F.get_size(expected), atol=2 if expand else 0, rtol=0)
Philip Meier's avatar
Philip Meier committed
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670

    @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"])
    @pytest.mark.parametrize("seed", list(range(10)))
    def test_transform_get_params_bounds(self, degrees, seed):
        transform = transforms.RandomRotation(degrees=degrees)

        torch.manual_seed(seed)
        params = transform._get_params([])

        if isinstance(degrees, (int, float)):
            assert -degrees <= params["angle"] <= degrees
        else:
            assert degrees[0] <= params["angle"] <= degrees[1]

    @pytest.mark.parametrize("param", ["degrees", "center"])
    @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]])
    def test_transform_sequence_len_errors(self, param, value):
        if param == "degrees" and not isinstance(value, list):
            return

        kwargs = {param: value}
        if param != "degrees":
            kwargs["degrees"] = 0

        with pytest.raises(
            ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2"
        ):
            transforms.RandomRotation(**kwargs)

    def test_transform_negative_degrees_error(self):
        with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"):
            transforms.RandomAffine(degrees=-1)

    def test_transform_unknown_fill_error(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomAffine(degrees=0, fill="fill")
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731


class TestCompose:
    class BuiltinTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt

    class PackedInputTransform(nn.Module):
        def forward(self, sample):
            assert len(sample) == 2
            return sample

    class UnpackedInputTransform(nn.Module):
        def forward(self, image, label):
            return image, label

    @pytest.mark.parametrize(
        "transform_clss",
        [
            [BuiltinTransform],
            [PackedInputTransform],
            [UnpackedInputTransform],
            [BuiltinTransform, BuiltinTransform],
            [PackedInputTransform, PackedInputTransform],
            [UnpackedInputTransform, UnpackedInputTransform],
            [BuiltinTransform, PackedInputTransform, BuiltinTransform],
            [BuiltinTransform, UnpackedInputTransform, BuiltinTransform],
            [PackedInputTransform, BuiltinTransform, PackedInputTransform],
            [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform],
        ],
    )
    @pytest.mark.parametrize("unpack", [True, False])
    def test_packed_unpacked(self, transform_clss, unpack):
        needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in transform_clss)
        needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in transform_clss)
        assert not (needs_packed_inputs and needs_unpacked_inputs)

        transform = transforms.Compose([cls() for cls in transform_clss])

        image = make_image()
        label = 3
        packed_input = (image, label)

        def call_transform():
            if unpack:
                return transform(*packed_input)
            else:
                return transform(packed_input)

        if needs_unpacked_inputs and not unpack:
            with pytest.raises(TypeError, match="missing 1 required positional argument"):
                call_transform()
        elif needs_packed_inputs and unpack:
            with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"):
                call_transform()
        else:
            output = call_transform()

            assert isinstance(output, tuple) and len(output) == 2
            assert output[0] is image
            assert output[1] is label
1732
1733
1734
1735
1736
1737


class TestToDtype:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1738
1739
            (F.to_dtype_image, make_image_tensor),
            (F.to_dtype_image, make_image),
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
            (F.to_dtype_video, make_video),
        ],
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_kernel(self, kernel, make_input, input_dtype, output_dtype, device, scale):
        check_kernel(
            kernel,
            make_input(dtype=input_dtype, device=device),
            expect_same_dtype=input_dtype is output_dtype,
            dtype=output_dtype,
            scale=scale,
        )

Philip Meier's avatar
Philip Meier committed
1756
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image, make_video])
1757
1758
1759
1760
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
Nicolas Hug's avatar
Nicolas Hug committed
1761
1762
    def test_functional(self, make_input, input_dtype, output_dtype, device, scale):
        check_functional(
1763
1764
1765
1766
1767
1768
1769
1770
            F.to_dtype,
            make_input(dtype=input_dtype, device=device),
            dtype=output_dtype,
            scale=scale,
        )

    @pytest.mark.parametrize(
        "make_input",
1771
        [make_image_tensor, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
    )
    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    @pytest.mark.parametrize("as_dict", (True, False))
    def test_transform(self, make_input, input_dtype, output_dtype, device, scale, as_dict):
        input = make_input(dtype=input_dtype, device=device)
        if as_dict:
            output_dtype = {type(input): output_dtype}
1782
        check_transform(transforms.ToDtype(dtype=output_dtype, scale=scale), input)
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845

    def reference_convert_dtype_image_tensor(self, image, dtype=torch.float, scale=False):
        input_dtype = image.dtype
        output_dtype = dtype

        if not scale:
            return image.to(dtype)

        if output_dtype == input_dtype:
            return image

        def fn(value):
            if input_dtype.is_floating_point:
                if output_dtype.is_floating_point:
                    return value
                else:
                    return round(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
            else:
                input_max_value = torch.iinfo(input_dtype).max

                if output_dtype.is_floating_point:
                    return float(decimal.Decimal(value) / input_max_value)
                else:
                    output_max_value = torch.iinfo(output_dtype).max

                    if input_max_value > output_max_value:
                        factor = (input_max_value + 1) // (output_max_value + 1)
                        return value / factor
                    else:
                        factor = (output_max_value + 1) // (input_max_value + 1)
                        return value * factor

        return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype, device=image.device)

    @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", (True, False))
    def test_image_correctness(self, input_dtype, output_dtype, device, scale):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            pytest.xfail("float to int64 conversion is not supported")

        input = make_image(dtype=input_dtype, device=device)

        out = F.to_dtype(input, dtype=output_dtype, scale=scale)
        expected = self.reference_convert_dtype_image_tensor(input, dtype=output_dtype, scale=scale)

        if input_dtype.is_floating_point and not output_dtype.is_floating_point and scale:
            torch.testing.assert_close(out, expected, atol=1, rtol=0)
        else:
            torch.testing.assert_close(out, expected)

    def was_scaled(self, inpt):
        # this assumes the target dtype is float
        return inpt.max() <= 1

    def make_inpt_with_bbox_and_mask(self, make_input):
        H, W = 10, 10
        inpt_dtype = torch.uint8
        bbox_dtype = torch.float32
        mask_dtype = torch.bool
        sample = {
            "inpt": make_input(size=(H, W), dtype=inpt_dtype),
1846
            "bbox": make_bounding_boxes(canvas_size=(H, W), dtype=bbox_dtype),
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
            "mask": make_detection_mask(size=(H, W), dtype=mask_dtype),
        }

        return sample, inpt_dtype, bbox_dtype, mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    @pytest.mark.parametrize("scale", (True, False))
    def test_dtype_not_a_dict(self, make_input, scale):
        # assert only inpt gets transformed when dtype isn't a dict

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(dtype=torch.float32, scale=scale)(sample)

        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        if scale:
            assert self.was_scaled(out["inpt"])
        else:
            assert not self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_others_catch_all_and_none(self, make_input):
        # make sure "others" works as a catch-all and that None means no conversion

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
1874
        out = transforms.ToDtype(dtype={tv_tensors.Mask: torch.int64, "others": None})(sample)
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_typical_use_case(self, make_input):
        # Typical use-case: want to convert dtype and scale for inpt and just dtype for masks.
        # This just makes sure we now have a decent API for this

        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)
        out = transforms.ToDtype(
1887
            dtype={type(sample["inpt"]): torch.float32, tv_tensors.Mask: torch.int64, "others": None}, scale=True
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
        )(sample)
        assert out["inpt"].dtype != inpt_dtype
        assert out["inpt"].dtype == torch.float32
        assert self.was_scaled(out["inpt"])
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype != mask_dtype
        assert out["mask"].dtype == torch.int64

    @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video))
    def test_errors_warnings(self, make_input):
        sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input)

        with pytest.raises(ValueError, match="No dtype was specified for"):
1901
            out = transforms.ToDtype(dtype={tv_tensors.Mask: torch.float32})(sample)
1902
        with pytest.warns(UserWarning, match=re.escape("plain `torch.Tensor` will *not* be transformed")):
1903
            transforms.ToDtype(dtype={torch.Tensor: torch.float32, tv_tensors.Image: torch.float32})
1904
1905
1906
1907
1908
        with pytest.warns(UserWarning, match="no scaling will be done"):
            out = transforms.ToDtype(dtype={"others": None}, scale=True)(sample)
        assert out["inpt"].dtype == inpt_dtype
        assert out["bbox"].dtype == bbox_dtype
        assert out["mask"].dtype == mask_dtype
1909
1910


1911
1912
1913
1914
1915
1916
1917
class TestAdjustBrightness:
    _CORRECTNESS_BRIGHTNESS_FACTORS = [0.5, 0.0, 1.0, 5.0]
    _DEFAULT_BRIGHTNESS_FACTOR = _CORRECTNESS_BRIGHTNESS_FACTORS[0]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
1918
            (F.adjust_brightness_image, make_image),
1919
1920
1921
1922
1923
1924
1925
1926
            (F.adjust_brightness_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)

Philip Meier's avatar
Philip Meier committed
1927
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
1928
1929
    def test_functional(self, make_input):
        check_functional(F.adjust_brightness, make_input(), brightness_factor=self._DEFAULT_BRIGHTNESS_FACTOR)
1930
1931
1932
1933

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
1934
1935
            (F.adjust_brightness_image, torch.Tensor),
            (F._adjust_brightness_image_pil, PIL.Image.Image),
1936
1937
            (F.adjust_brightness_image, tv_tensors.Image),
            (F.adjust_brightness_video, tv_tensors.Video),
1938
1939
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
1940
1941
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.adjust_brightness, kernel=kernel, input_type=input_type)
1942
1943
1944
1945
1946
1947

    @pytest.mark.parametrize("brightness_factor", _CORRECTNESS_BRIGHTNESS_FACTORS)
    def test_image_correctness(self, brightness_factor):
        image = make_image(dtype=torch.uint8, device="cpu")

        actual = F.adjust_brightness(image, brightness_factor=brightness_factor)
1948
        expected = F.to_image(F.adjust_brightness(F.to_pil_image(image), brightness_factor=brightness_factor))
1949
1950
1951
1952

        torch.testing.assert_close(actual, expected)


1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
class TestCutMixMixUp:
    class DummyDataset:
        def __init__(self, size, num_classes):
            self.size = size
            self.num_classes = num_classes
            assert size < num_classes

        def __getitem__(self, idx):
            img = torch.rand(3, 100, 100)
            label = idx  # This ensures all labels in a batch are unique and makes testing easier
            return img, label

        def __len__(self):
            return self.size

Nicolas Hug's avatar
Nicolas Hug committed
1968
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
1969
1970
1971
1972
1973
1974
1975
    def test_supported_input_structure(self, T):

        batch_size = 32
        num_classes = 100

        dataset = self.DummyDataset(size=batch_size, num_classes=num_classes)

1976
        cutmix_mixup = T(num_classes=num_classes)
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

        dl = DataLoader(dataset, batch_size=batch_size)

        # Input sanity checks
        img, target = next(iter(dl))
        input_img_size = img.shape[-3:]
        assert isinstance(img, torch.Tensor) and isinstance(target, torch.Tensor)
        assert target.shape == (batch_size,)

        def check_output(img, target):
            assert img.shape == (batch_size, *input_img_size)
            assert target.shape == (batch_size, num_classes)
            torch.testing.assert_close(target.sum(axis=-1), torch.ones(batch_size))
            num_non_zero_labels = (target != 0).sum(axis=-1)
            assert (num_non_zero_labels == 2).all()

        # After Dataloader, as unpacked input
        img, target = next(iter(dl))
        assert target.shape == (batch_size,)
        img, target = cutmix_mixup(img, target)
        check_output(img, target)

        # After Dataloader, as packed input
        packed_from_dl = next(iter(dl))
        assert isinstance(packed_from_dl, list)
        img, target = cutmix_mixup(packed_from_dl)
        check_output(img, target)

        # As collation function. We expect default_collate to be used by users.
        def collate_fn_1(batch):
            return cutmix_mixup(default_collate(batch))

        def collate_fn_2(batch):
            return cutmix_mixup(*default_collate(batch))

        for collate_fn in (collate_fn_1, collate_fn_2):
            dl = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)
            img, target = next(iter(dl))
            check_output(img, target)

    @needs_cuda
Nicolas Hug's avatar
Nicolas Hug committed
2018
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
    def test_cpu_vs_gpu(self, T):
        num_classes = 10
        batch_size = 3
        H, W = 12, 12

        imgs = torch.rand(batch_size, 3, H, W)
        labels = torch.randint(0, num_classes, (batch_size,))
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        _check_kernel_cuda_vs_cpu(cutmix_mixup, imgs, labels, rtol=None, atol=None)

Nicolas Hug's avatar
Nicolas Hug committed
2030
    @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp])
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
    def test_error(self, T):

        num_classes = 10
        batch_size = 9

        imgs = torch.rand(batch_size, 3, 12, 12)
        cutmix_mixup = T(alpha=0.5, num_classes=num_classes)

        for input_with_bad_type in (
            F.to_pil_image(imgs[0]),
2041
2042
            tv_tensors.Mask(torch.rand(12, 12)),
            tv_tensors.BoundingBoxes(torch.rand(2, 4), format="XYXY", canvas_size=12),
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
        ):
            with pytest.raises(ValueError, match="does not support PIL images, "):
                cutmix_mixup(input_with_bad_type)

        with pytest.raises(ValueError, match="Could not infer where the labels are"):
            cutmix_mixup({"img": imgs, "Nothing_else": 3})

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # Note: the error message isn't ideal, but that's because the label heuristic found the img as the label
            # It's OK, it's an edge-case. The important thing is that this fails loudly instead of passing silently
            cutmix_mixup(imgs)

        with pytest.raises(ValueError, match="When using the default labels_getter"):
            cutmix_mixup(imgs, "not_a_tensor")

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            cutmix_mixup(imgs, torch.randint(0, 2, size=(2, 3)))

        with pytest.raises(ValueError, match="Expected a batched input with 4 dims"):
            cutmix_mixup(imgs[None, None], torch.randint(0, num_classes, size=(batch_size,)))

        with pytest.raises(ValueError, match="does not match the batch size of the labels"):
            cutmix_mixup(imgs, torch.randint(0, num_classes, size=(batch_size + 1,)))

        with pytest.raises(ValueError, match="labels tensor should be of shape"):
            # The purpose of this check is more about documenting the current
            # behaviour of what happens on a Compose(), rather than actually
            # asserting the expected behaviour. We may support Compose() in the
            # future, e.g. for 2 consecutive CutMix?
            labels = torch.randint(0, num_classes, size=(batch_size,))
            transforms.Compose([cutmix_mixup, cutmix_mixup])(imgs, labels)


@pytest.mark.parametrize("key", ("labels", "LABELS", "LaBeL", "SOME_WEIRD_KEY_THAT_HAS_LABeL_IN_IT"))
@pytest.mark.parametrize("sample_type", (tuple, list, dict))
def test_labels_getter_default_heuristic(key, sample_type):
    labels = torch.arange(10)
    sample = {key: labels, "another_key": "whatever"}
    if sample_type is not dict:
        sample = sample_type((None, sample, "whatever_again"))
    assert transforms._utils._find_labels_default_heuristic(sample) is labels

    if key.lower() != "labels":
        # If "labels" is in the dict (case-insensitive),
        # it takes precedence over other keys which would otherwise be a match
        d = {key: "something_else", "labels": labels}
        assert transforms._utils._find_labels_default_heuristic(d) is labels
2090
2091
2092
2093
2094
2095


class TestShapeGetters:
    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2096
2097
2098
            (F.get_dimensions_image, make_image_tensor),
            (F._get_dimensions_image_pil, make_image_pil),
            (F.get_dimensions_image, make_image),
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
            (F.get_dimensions_video, make_video),
        ],
    )
    def test_get_dimensions(self, kernel, make_input):
        size = (10, 10)
        color_space, num_channels = "RGB", 3

        input = make_input(size, color_space=color_space)

        assert kernel(input) == F.get_dimensions(input) == [num_channels, *size]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2113
2114
2115
            (F.get_num_channels_image, make_image_tensor),
            (F._get_num_channels_image_pil, make_image_pil),
            (F.get_num_channels_image, make_image),
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
            (F.get_num_channels_video, make_video),
        ],
    )
    def test_get_num_channels(self, kernel, make_input):
        color_space, num_channels = "RGB", 3

        input = make_input(color_space=color_space)

        assert kernel(input) == F.get_num_channels(input) == num_channels

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2129
2130
2131
            (F.get_size_image, make_image_tensor),
            (F._get_size_image_pil, make_image_pil),
            (F.get_size_image, make_image),
2132
            (F.get_size_bounding_boxes, make_bounding_boxes),
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
            (F.get_size_mask, make_detection_mask),
            (F.get_size_mask, make_segmentation_mask),
            (F.get_size_video, make_video),
        ],
    )
    def test_get_size(self, kernel, make_input):
        size = (10, 10)

        input = make_input(size)

        assert kernel(input) == F.get_size(input) == list(size)

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
            (F.get_num_frames_video, make_video_tensor),
            (F.get_num_frames_video, make_video),
        ],
    )
    def test_get_num_frames(self, kernel, make_input):
        num_frames = 4

        input = make_input(num_frames=num_frames)

        assert kernel(input) == F.get_num_frames(input) == num_frames

    @pytest.mark.parametrize(
Nicolas Hug's avatar
Nicolas Hug committed
2160
        ("functional", "make_input"),
2161
        [
2162
            (F.get_dimensions, make_bounding_boxes),
2163
2164
            (F.get_dimensions, make_detection_mask),
            (F.get_dimensions, make_segmentation_mask),
2165
            (F.get_num_channels, make_bounding_boxes),
2166
2167
2168
2169
            (F.get_num_channels, make_detection_mask),
            (F.get_num_channels, make_segmentation_mask),
            (F.get_num_frames, make_image_pil),
            (F.get_num_frames, make_image),
2170
            (F.get_num_frames, make_bounding_boxes),
2171
2172
2173
2174
            (F.get_num_frames, make_detection_mask),
            (F.get_num_frames, make_segmentation_mask),
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2175
    def test_unsupported_types(self, functional, make_input):
2176
2177
2178
        input = make_input()

        with pytest.raises(TypeError, match=re.escape(str(type(input)))):
Nicolas Hug's avatar
Nicolas Hug committed
2179
            functional(input)
2180
2181
2182


class TestRegisterKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2183
2184
    @pytest.mark.parametrize("functional", (F.resize, "resize"))
    def test_register_kernel(self, functional):
2185
        class CustomTVTensor(tv_tensors.TVTensor):
2186
2187
2188
2189
            pass

        kernel_was_called = False

2190
        @F.register_kernel(functional, CustomTVTensor)
2191
2192
2193
2194
2195
2196
2197
        def new_resize(dp, *args, **kwargs):
            nonlocal kernel_was_called
            kernel_was_called = True
            return dp

        t = transforms.Resize(size=(224, 224), antialias=True)

2198
        my_dp = CustomTVTensor(torch.rand(3, 10, 10))
2199
2200
2201
2202
2203
2204
        out = t(my_dp)
        assert out is my_dp
        assert kernel_was_called

        # Sanity check to make sure we didn't override the kernel of other types
        t(torch.rand(3, 10, 10)).shape == (3, 224, 224)
2205
        t(tv_tensors.Image(torch.rand(3, 10, 10))).shape == (3, 224, 224)
2206

2207
    def test_errors(self):
Nicolas Hug's avatar
Nicolas Hug committed
2208
        with pytest.raises(ValueError, match="Could not find functional with name"):
2209
            F.register_kernel("bad_name", tv_tensors.Image)
2210

Nicolas Hug's avatar
Nicolas Hug committed
2211
        with pytest.raises(ValueError, match="Kernels can only be registered on functionals"):
2212
            F.register_kernel(tv_tensors.Image, F.resize)
2213
2214
2215
2216

        with pytest.raises(ValueError, match="Kernels can only be registered for subclasses"):
            F.register_kernel(F.resize, object)

2217
2218
        with pytest.raises(ValueError, match="cannot be registered for the builtin tv_tensor classes"):
            F.register_kernel(F.resize, tv_tensors.Image)(F.resize_image)
2219

2220
        class CustomTVTensor(tv_tensors.TVTensor):
2221
2222
            pass

2223
        def resize_custom_tv_tensor():
2224
2225
            pass

2226
        F.register_kernel(F.resize, CustomTVTensor)(resize_custom_tv_tensor)
2227
2228

        with pytest.raises(ValueError, match="already has a kernel registered for type"):
2229
            F.register_kernel(F.resize, CustomTVTensor)(resize_custom_tv_tensor)
2230

2231
2232

class TestGetKernel:
Nicolas Hug's avatar
Nicolas Hug committed
2233
    # We are using F.resize as functional and the kernels below as proxy. Any other functional / kernels combination
2234
2235
    # would also be fine
    KERNELS = {
2236
2237
        torch.Tensor: F.resize_image,
        PIL.Image.Image: F._resize_image_pil,
2238
2239
2240
2241
        tv_tensors.Image: F.resize_image,
        tv_tensors.BoundingBoxes: F.resize_bounding_boxes,
        tv_tensors.Mask: F.resize_mask,
        tv_tensors.Video: F.resize_video,
2242
2243
    }

2244
2245
2246
2247
    @pytest.mark.parametrize("input_type", [str, int, object])
    def test_unsupported_types(self, input_type):
        with pytest.raises(TypeError, match="supports inputs of type"):
            _get_kernel(F.resize, input_type)
2248
2249
2250

    def test_exact_match(self):
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2251
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2252
2253
2254
2255
2256
        # here, register the kernels without wrapper, and check the exact matching afterwards.
        def resize_with_pure_kernels():
            pass

        for input_type, kernel in self.KERNELS.items():
2257
            _register_kernel_internal(resize_with_pure_kernels, input_type, tv_tensor_wrapper=False)(kernel)
2258
2259
2260

            assert _get_kernel(resize_with_pure_kernels, input_type) is kernel

2261
    def test_builtin_tv_tensor_subclass(self):
2262
        # We cannot use F.resize together with self.KERNELS mapping here directly here, since this is only the
Nicolas Hug's avatar
Nicolas Hug committed
2263
        # ideal wrapping. Practically, we have an intermediate wrapper layer. Thus, we create a new resize functional
2264
        # here, register the kernels without wrapper, and check if subclasses of our builtin tv_tensors get dispatched
2265
2266
2267
2268
        # to the kernel of the corresponding superclass
        def resize_with_pure_kernels():
            pass

2269
        class MyImage(tv_tensors.Image):
2270
2271
            pass

2272
        class MyBoundingBoxes(tv_tensors.BoundingBoxes):
2273
2274
            pass

2275
        class MyMask(tv_tensors.Mask):
2276
2277
            pass

2278
        class MyVideo(tv_tensors.Video):
2279
2280
            pass

2281
        for custom_tv_tensor_subclass in [
2282
2283
2284
2285
2286
            MyImage,
            MyBoundingBoxes,
            MyMask,
            MyVideo,
        ]:
2287
2288
2289
2290
            builtin_tv_tensor_class = custom_tv_tensor_subclass.__mro__[1]
            builtin_tv_tensor_kernel = self.KERNELS[builtin_tv_tensor_class]
            _register_kernel_internal(resize_with_pure_kernels, builtin_tv_tensor_class, tv_tensor_wrapper=False)(
                builtin_tv_tensor_kernel
2291
2292
            )

2293
            assert _get_kernel(resize_with_pure_kernels, custom_tv_tensor_subclass) is builtin_tv_tensor_kernel
2294

2295
2296
    def test_tv_tensor_subclass(self):
        class MyTVTensor(tv_tensors.TVTensor):
2297
2298
            pass

2299
        with pytest.raises(TypeError, match="supports inputs of type"):
2300
            _get_kernel(F.resize, MyTVTensor)
2301

2302
        def resize_my_tv_tensor():
2303
2304
            pass

2305
        _register_kernel_internal(F.resize, MyTVTensor, tv_tensor_wrapper=False)(resize_my_tv_tensor)
2306

2307
        assert _get_kernel(F.resize, MyTVTensor) is resize_my_tv_tensor
2308

2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
    def test_pil_image_subclass(self):
        opened_image = PIL.Image.open(Path(__file__).parent / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")
        loaded_image = opened_image.convert("RGB")

        # check the assumptions
        assert isinstance(opened_image, PIL.Image.Image)
        assert type(opened_image) is not PIL.Image.Image

        assert type(loaded_image) is PIL.Image.Image

        size = [17, 11]
        for image in [opened_image, loaded_image]:
            kernel = _get_kernel(F.resize, type(image))

            output = kernel(image, size=size)

            assert F.get_size(output) == size

2327
2328
2329
2330
2331
2332
2333

class TestPermuteChannels:
    _DEFAULT_PERMUTATION = [2, 0, 1]

    @pytest.mark.parametrize(
        ("kernel", "make_input"),
        [
2334
            (F.permute_channels_image, make_image_tensor),
2335
2336
            # FIXME
            # check_kernel does not support PIL kernel, but it should
2337
            (F.permute_channels_image, make_image),
2338
2339
2340
2341
2342
2343
2344
2345
            (F.permute_channels_video, make_video),
        ],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel(self, kernel, make_input, dtype, device):
        check_kernel(kernel, make_input(dtype=dtype, device=device), permutation=self._DEFAULT_PERMUTATION)

Nicolas Hug's avatar
Nicolas Hug committed
2346
    @pytest.mark.parametrize("make_input", [make_image_tensor, make_image_pil, make_image, make_video])
Nicolas Hug's avatar
Nicolas Hug committed
2347
2348
    def test_functional(self, make_input):
        check_functional(F.permute_channels, make_input(), permutation=self._DEFAULT_PERMUTATION)
2349
2350
2351
2352

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
2353
2354
            (F.permute_channels_image, torch.Tensor),
            (F._permute_channels_image_pil, PIL.Image.Image),
2355
2356
            (F.permute_channels_image, tv_tensors.Image),
            (F.permute_channels_video, tv_tensors.Video),
2357
2358
        ],
    )
Nicolas Hug's avatar
Nicolas Hug committed
2359
2360
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.permute_channels, kernel=kernel, input_type=input_type)
2361
2362
2363
2364

    def reference_image_correctness(self, image, permutation):
        channel_images = image.split(1, dim=-3)
        permuted_channel_images = [channel_images[channel_idx] for channel_idx in permutation]
2365
        return tv_tensors.Image(torch.concat(permuted_channel_images, dim=-3))
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

    @pytest.mark.parametrize("permutation", [[2, 0, 1], [1, 2, 0], [2, 0, 1], [0, 1, 2]])
    @pytest.mark.parametrize("batch_dims", [(), (2,), (2, 1)])
    def test_image_correctness(self, permutation, batch_dims):
        image = make_image(batch_dims=batch_dims)

        actual = F.permute_channels(image, permutation=permutation)
        expected = self.reference_image_correctness(image, permutation=permutation)

        torch.testing.assert_close(actual, expected)
Philip Meier's avatar
Philip Meier committed
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393


class TestElastic:
    def _make_displacement(self, inpt):
        return torch.rand(
            1,
            *F.get_size(inpt),
            2,
            dtype=torch.float32,
            device=inpt.device if isinstance(inpt, torch.Tensor) else "cpu",
        )

    @param_value_parametrization(
        interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
2394
    def test_kernel_image(self, param, value, dtype, device):
Philip Meier's avatar
Philip Meier committed
2395
2396
2397
        image = make_image_tensor(dtype=dtype, device=device)

        check_kernel(
Philip Meier's avatar
Philip Meier committed
2398
            F.elastic_image,
Philip Meier's avatar
Philip Meier committed
2399
2400
2401
2402
2403
2404
            image,
            displacement=self._make_displacement(image),
            **{param: value},
            check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))),
        )

2405
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
Philip Meier's avatar
Philip Meier committed
2406
2407
2408
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_boxes(self, format, dtype, device):
2409
        bounding_boxes = make_bounding_boxes(format=format, dtype=dtype, device=device)
Philip Meier's avatar
Philip Meier committed
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

        check_kernel(
            F.elastic_bounding_boxes,
            bounding_boxes,
            format=bounding_boxes.format,
            canvas_size=bounding_boxes.canvas_size,
            displacement=self._make_displacement(bounding_boxes),
        )

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        mask = make_mask()
        check_kernel(F.elastic_mask, mask, displacement=self._make_displacement(mask))

    def test_kernel_video(self):
        video = make_video()
        check_kernel(F.elastic_video, video, displacement=self._make_displacement(video))

    @pytest.mark.parametrize(
        "make_input",
2430
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2431
2432
2433
2434
2435
2436
2437
2438
    )
    def test_functional(self, make_input):
        input = make_input()
        check_functional(F.elastic, input, displacement=self._make_displacement(input))

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
Philip Meier's avatar
Philip Meier committed
2439
2440
            (F.elastic_image, torch.Tensor),
            (F._elastic_image_pil, PIL.Image.Image),
2441
2442
2443
2444
            (F.elastic_image, tv_tensors.Image),
            (F.elastic_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.elastic_mask, tv_tensors.Mask),
            (F.elastic_video, tv_tensors.Video),
Philip Meier's avatar
Philip Meier committed
2445
2446
2447
2448
2449
2450
2451
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.elastic, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
2452
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
    )
    def test_displacement_error(self, make_input):
        input = make_input()

        with pytest.raises(TypeError, match="displacement should be a Tensor"):
            F.elastic(input, displacement=None)

        with pytest.raises(ValueError, match="displacement shape should be"):
            F.elastic(input, displacement=torch.rand(F.get_size(input)))

    @pytest.mark.parametrize(
        "make_input",
2465
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
Philip Meier's avatar
Philip Meier committed
2466
2467
2468
2469
2470
    )
    # ElasticTransform needs larger images to avoid the needed internal padding being larger than the actual image
    @pytest.mark.parametrize("size", [(163, 163), (72, 333), (313, 95)])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, size, device):
2471
2472
2473
2474
2475
2476
        check_transform(
            transforms.ElasticTransform(),
            make_input(size, device=device),
            # We updated gaussian blur kernel generation with a faster and numerically more stable version
            check_v1_compatibility=dict(rtol=0, atol=1),
        )
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486


class TestToPureTensor:
    def test_correctness(self):
        input = {
            "img": make_image(),
            "img_tensor": make_image_tensor(),
            "img_pil": make_image_pil(),
            "mask": make_detection_mask(),
            "video": make_video(),
2487
            "bbox": make_bounding_boxes(),
2488
2489
2490
2491
2492
2493
            "str": "str",
        }

        out = transforms.ToPureTensor()(input)

        for input_value, out_value in zip(input.values(), out.values()):
2494
2495
            if isinstance(input_value, tv_tensors.TVTensor):
                assert isinstance(out_value, torch.Tensor) and not isinstance(out_value, tv_tensors.TVTensor)
2496
2497
            else:
                assert isinstance(out_value, type(input_value))
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586


class TestCrop:
    INPUT_SIZE = (21, 11)

    CORRECTNESS_CROP_KWARGS = [
        # center
        dict(top=5, left=5, height=10, width=5),
        # larger than input, i.e. pad
        dict(top=-5, left=-5, height=30, width=20),
        # sides: left, right, top, bottom
        dict(top=-5, left=-5, height=30, width=10),
        dict(top=-5, left=5, height=30, width=10),
        dict(top=-5, left=-5, height=20, width=20),
        dict(top=5, left=-5, height=20, width=20),
        # corners: top-left, top-right, bottom-left, bottom-right
        dict(top=-5, left=-5, height=20, width=10),
        dict(top=-5, left=5, height=20, width=10),
        dict(top=5, left=-5, height=20, width=10),
        dict(top=5, left=5, height=20, width=10),
    ]
    MINIMAL_CROP_KWARGS = CORRECTNESS_CROP_KWARGS[0]

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    @pytest.mark.parametrize("dtype", [torch.uint8, torch.float32])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, kwargs, dtype, device):
        check_kernel(F.crop_image, make_image(self.INPUT_SIZE, dtype=dtype, device=device), **kwargs)

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_bounding_box(self, kwargs, format, dtype, device):
        bounding_boxes = make_bounding_boxes(self.INPUT_SIZE, format=format, dtype=dtype, device=device)
        check_kernel(F.crop_bounding_boxes, bounding_boxes, format=format, **kwargs)

    @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask])
    def test_kernel_mask(self, make_mask):
        check_kernel(F.crop_mask, make_mask(self.INPUT_SIZE), **self.MINIMAL_CROP_KWARGS)

    def test_kernel_video(self):
        check_kernel(F.crop_video, make_video(self.INPUT_SIZE), **self.MINIMAL_CROP_KWARGS)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.crop, make_input(self.INPUT_SIZE), **self.MINIMAL_CROP_KWARGS)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.crop_image, torch.Tensor),
            (F._crop_image_pil, PIL.Image.Image),
            (F.crop_image, tv_tensors.Image),
            (F.crop_bounding_boxes, tv_tensors.BoundingBoxes),
            (F.crop_mask, tv_tensors.Mask),
            (F.crop_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.crop, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    def test_functional_image_correctness(self, kwargs):
        image = make_image(self.INPUT_SIZE, dtype=torch.uint8, device="cpu")

        actual = F.crop(image, **kwargs)
        expected = F.to_image(F.crop(F.to_pil_image(image), **kwargs))

        assert_equal(actual, expected)

    @param_value_parametrization(
        size=[(10, 5), (25, 15), (25, 5), (10, 15)],
        fill=EXHAUSTIVE_TYPE_FILLS,
    )
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    def test_transform(self, param, value, make_input):
        input = make_input(self.INPUT_SIZE)

        if param == "fill":
            if isinstance(input, tv_tensors.Mask) and isinstance(value, (tuple, list)):
                pytest.skip("F.pad_mask doesn't support non-scalar fill.")

2587
2588
2589
2590
2591
2592
2593
2594
2595
            kwargs = dict(
                # 1. size is required
                # 2. the fill parameter only has an affect if we need padding
                size=[s + 4 for s in self.INPUT_SIZE],
                fill=adapt_fill(value, dtype=input.dtype if isinstance(input, torch.Tensor) else torch.uint8),
            )
        else:
            kwargs = {param: value}

2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
        check_transform(
            transforms.RandomCrop(**kwargs, pad_if_needed=True),
            input,
            check_v1_compatibility=param != "fill" or isinstance(value, (int, float)),
        )

    @pytest.mark.parametrize("padding", [1, (1, 1), (1, 1, 1, 1)])
    def test_transform_padding(self, padding):
        inpt = make_image(self.INPUT_SIZE)

        output_size = [s + 2 for s in F.get_size(inpt)]
        transform = transforms.RandomCrop(output_size, padding=padding)

        output = transform(inpt)

        assert F.get_size(output) == output_size

    @pytest.mark.parametrize("padding", [None, 1, (1, 1), (1, 1, 1, 1)])
    def test_transform_insufficient_padding(self, padding):
        inpt = make_image(self.INPUT_SIZE)

        output_size = [s + 3 for s in F.get_size(inpt)]
        transform = transforms.RandomCrop(output_size, padding=padding)

        with pytest.raises(ValueError, match="larger than (padded )?input image size"):
            transform(inpt)

    def test_transform_pad_if_needed(self):
        inpt = make_image(self.INPUT_SIZE)

        output_size = [s * 2 for s in F.get_size(inpt)]
        transform = transforms.RandomCrop(output_size, pad_if_needed=True)

        output = transform(inpt)

        assert F.get_size(output) == output_size

    @param_value_parametrization(
        size=[(10, 5), (25, 15), (25, 5), (10, 15)],
        fill=CORRECTNESS_FILLS,
        padding_mode=["constant", "edge", "reflect", "symmetric"],
    )
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, param, value, seed):
        kwargs = {param: value}
        if param != "size":
            # 1. size is required
            # 2. the fill / padding_mode parameters only have an affect if we need padding
            kwargs["size"] = [s + 4 for s in self.INPUT_SIZE]
        if param == "fill":
            kwargs["fill"] = adapt_fill(kwargs["fill"], dtype=torch.uint8)

        transform = transforms.RandomCrop(pad_if_needed=True, **kwargs)

        image = make_image(self.INPUT_SIZE)

        with freeze_rng_state():
            torch.manual_seed(seed)
            actual = transform(image)

            torch.manual_seed(seed)
            expected = F.to_image(transform(F.to_pil_image(image)))

        assert_equal(actual, expected)

    def _reference_crop_bounding_boxes(self, bounding_boxes, *, top, left, height, width):
        affine_matrix = np.array(
            [
                [1, 0, -left],
                [0, 1, -top],
            ],
        )
        return reference_affine_bounding_boxes_helper(
            bounding_boxes, affine_matrix=affine_matrix, new_canvas_size=(height, width)
        )

    @pytest.mark.parametrize("kwargs", CORRECTNESS_CROP_KWARGS)
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_functional_bounding_box_correctness(self, kwargs, format, dtype, device):
        bounding_boxes = make_bounding_boxes(self.INPUT_SIZE, format=format, dtype=dtype, device=device)

        actual = F.crop(bounding_boxes, **kwargs)
        expected = self._reference_crop_bounding_boxes(bounding_boxes, **kwargs)

        assert_equal(actual, expected, atol=1, rtol=0)
        assert_equal(F.get_size(actual), F.get_size(expected))

    @pytest.mark.parametrize("output_size", [(17, 11), (11, 17), (11, 11)])
    @pytest.mark.parametrize("format", list(tv_tensors.BoundingBoxFormat))
    @pytest.mark.parametrize("dtype", [torch.float32, torch.int64])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_bounding_boxes_correctness(self, output_size, format, dtype, device, seed):
        input_size = [s * 2 for s in output_size]
        bounding_boxes = make_bounding_boxes(input_size, format=format, dtype=dtype, device=device)

        transform = transforms.RandomCrop(output_size)

        with freeze_rng_state():
            torch.manual_seed(seed)
            params = transform._get_params([bounding_boxes])
            assert not params.pop("needs_pad")
            del params["padding"]
            assert params.pop("needs_crop")

            torch.manual_seed(seed)
            actual = transform(bounding_boxes)

        expected = self._reference_crop_bounding_boxes(bounding_boxes, **params)

        assert_equal(actual, expected)
        assert_equal(F.get_size(actual), F.get_size(expected))

    def test_errors(self):
        with pytest.raises(ValueError, match="Please provide only two dimensions"):
            transforms.RandomCrop([10, 12, 14])

        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.RandomCrop([10, 12], padding="abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.RandomCrop([10, 12], padding=[-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomCrop([10, 12], padding=1, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.RandomCrop([10, 12], padding=1, padding_mode="abc")
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866


class TestErase:
    INPUT_SIZE = (17, 11)
    FUNCTIONAL_KWARGS = dict(
        zip("ijhwv", [2, 2, 10, 8, torch.tensor(0.0, dtype=torch.float32, device="cpu").reshape(-1, 1, 1)])
    )

    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image(self, dtype, device):
        check_kernel(F.erase_image, make_image(self.INPUT_SIZE, dtype=dtype, device=device), **self.FUNCTIONAL_KWARGS)

    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_kernel_image_inplace(self, dtype, device):
        input = make_image(self.INPUT_SIZE, dtype=dtype, device=device)
        input_version = input._version

        output_out_of_place = F.erase_image(input, **self.FUNCTIONAL_KWARGS)
        assert output_out_of_place.data_ptr() != input.data_ptr()
        assert output_out_of_place is not input

        output_inplace = F.erase_image(input, **self.FUNCTIONAL_KWARGS, inplace=True)
        assert output_inplace.data_ptr() == input.data_ptr()
        assert output_inplace._version > input_version
        assert output_inplace is input

        assert_equal(output_inplace, output_out_of_place)

    def test_kernel_video(self):
        check_kernel(F.erase_video, make_video(self.INPUT_SIZE), **self.FUNCTIONAL_KWARGS)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    def test_functional(self, make_input):
        check_functional(F.erase, make_input(), **self.FUNCTIONAL_KWARGS)

    @pytest.mark.parametrize(
        ("kernel", "input_type"),
        [
            (F.erase_image, torch.Tensor),
            (F._erase_image_pil, PIL.Image.Image),
            (F.erase_image, tv_tensors.Image),
            (F.erase_video, tv_tensors.Video),
        ],
    )
    def test_functional_signature(self, kernel, input_type):
        check_functional_kernel_signature_match(F.erase, kernel=kernel, input_type=input_type)

    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_video],
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_transform(self, make_input, device):
        check_transform(transforms.RandomErasing(p=1), make_input(device=device))

    def _reference_erase_image(self, image, *, i, j, h, w, v):
        mask = torch.zeros_like(image, dtype=torch.bool)
        mask[..., i : i + h, j : j + w] = True

        # The broadcasting and type casting logic is handled automagically in the kernel through indexing
        value = torch.broadcast_to(v, (*image.shape[:-2], h, w)).to(image)

        erased_image = torch.empty_like(image)
        erased_image[mask] = value.flatten()
        erased_image[~mask] = image[~mask]

        return erased_image

    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    def test_functional_image_correctness(self, dtype, device):
        image = make_image(dtype=dtype, device=device)

        actual = F.erase(image, **self.FUNCTIONAL_KWARGS)
        expected = self._reference_erase_image(image, **self.FUNCTIONAL_KWARGS)

        assert_equal(actual, expected)

    @param_value_parametrization(
        scale=[(0.1, 0.2), [0.0, 1.0]],
        ratio=[(0.3, 0.7), [0.1, 5.0]],
        value=[0, 0.5, (0, 1, 0), [-0.2, 0.0, 1.3], "random"],
    )
    @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8])
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("seed", list(range(5)))
    def test_transform_image_correctness(self, param, value, dtype, device, seed):
        transform = transforms.RandomErasing(**{param: value}, p=1)

        image = make_image(dtype=dtype, device=device)

        with freeze_rng_state():
            torch.manual_seed(seed)
            # This emulates the random apply check that happens before _get_params is called
            torch.rand(1)
            params = transform._get_params([image])

            torch.manual_seed(seed)
            actual = transform(image)

        expected = self._reference_erase_image(image, **params)

        assert_equal(actual, expected)

    def test_transform_errors(self):
        with pytest.raises(TypeError, match="Argument value should be either a number or str or a sequence"):
            transforms.RandomErasing(value={})

        with pytest.raises(ValueError, match="If value is str, it should be 'random'"):
            transforms.RandomErasing(value="abc")

        with pytest.raises(TypeError, match="Scale should be a sequence"):
            transforms.RandomErasing(scale=123)

        with pytest.raises(TypeError, match="Ratio should be a sequence"):
            transforms.RandomErasing(ratio=123)

        with pytest.raises(ValueError, match="Scale should be between 0 and 1"):
            transforms.RandomErasing(scale=[-1, 2])

        transform = transforms.RandomErasing(value=[1, 2, 3, 4])

        with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value"):
            transform._get_params([make_image()])

    @pytest.mark.parametrize("make_input", [make_bounding_boxes, make_detection_mask])
    def test_transform_passthrough(self, make_input):
        transform = transforms.RandomErasing(p=1)

        input = make_input(self.INPUT_SIZE)

        with pytest.warns(UserWarning, match="currently passing through inputs of type"):
            # RandomErasing requires an image or video to be present
            _, output = transform(make_image(self.INPUT_SIZE), input)

        assert output is input
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909


class TestGaussianBlur:
    @pytest.mark.parametrize(
        "make_input",
        [make_image_tensor, make_image_pil, make_image, make_bounding_boxes, make_segmentation_mask, make_video],
    )
    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("sigma", [5, (0.5, 2)])
    def test_transform(self, make_input, device, sigma):
        check_transform(transforms.GaussianBlur(kernel_size=3, sigma=sigma), make_input(device=device))

    def test_assertions(self):
        with pytest.raises(ValueError, match="Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([10, 12, 14])

        with pytest.raises(ValueError, match="Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur(4)

        with pytest.raises(ValueError, match="If sigma is a sequence its length should be 1 or 2. Got 3"):
            transforms.GaussianBlur(3, sigma=[1, 2, 3])

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=-1.0)

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=[2.0, 1.0])

        with pytest.raises(TypeError, match="sigma should be a number or a sequence of numbers"):
            transforms.GaussianBlur(3, sigma={})

    @pytest.mark.parametrize("sigma", [10.0, [10.0, 12.0], (10, 12.0), [10]])
    def test__get_params(self, sigma):
        transform = transforms.GaussianBlur(3, sigma=sigma)
        params = transform._get_params([])

        if isinstance(sigma, float):
            assert params["sigma"][0] == params["sigma"][1] == sigma
        elif isinstance(sigma, list) and len(sigma) == 1:
            assert params["sigma"][0] == params["sigma"][1] == sigma[0]
        else:
            assert sigma[0] <= params["sigma"][0] <= sigma[1]
            assert sigma[0] <= params["sigma"][1] <= sigma[1]