test_transforms.py 82.1 KB
Newer Older
1
import math
2
import os
3
import random
4
import re
5
import textwrap
6
import warnings
7
from functools import partial
8
9
10

import numpy as np
import pytest
11
12
import torch
import torchvision.transforms as transforms
13
import torchvision.transforms._functional_tensor as F_t
14
import torchvision.transforms.functional as F
15
from PIL import Image
16
17
from torch._utils_internal import get_file_path_2

18
19
20
21
22
try:
    import accimage
except ImportError:
    accimage = None

23
24
25
26
27
try:
    from scipy import stats
except ImportError:
    stats = None

28
from common_utils import assert_equal, assert_run_python_script, cycle_over, float_dtypes, int_dtypes
29
30


31
GRACE_HOPPER = get_file_path_2(
32
33
    os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
)
34
35


36
def _get_grayscale_test_image(img, fill=None):
37
38
    img = img.convert("L")
    fill = (fill[0],) if isinstance(fill, tuple) else fill
39
40
41
    return img, fill


42
class TestConvertImageDtype:
43
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(float_dtypes()))
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    def test_float_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert abs(actual_max - desired_max) < 1e-7

60
61
    @pytest.mark.parametrize("input_dtype", float_dtypes())
    @pytest.mark.parametrize("output_dtype", int_dtypes())
62
63
64
65
66
67
    def test_float_to_int(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
68
            input_dtype == torch.float64 and output_dtype == torch.int64
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        ):
            with pytest.raises(RuntimeError):
                transform(input_image)
        else:
            output_image = transform(input_image)
            output_image_script = transform_script(input_image, output_dtype)

            torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

            actual_min, actual_max = output_image.tolist()
            desired_min, desired_max = 0, torch.iinfo(output_dtype).max

            assert actual_min == desired_min
            assert actual_max == desired_max

84
85
    @pytest.mark.parametrize("input_dtype", int_dtypes())
    @pytest.mark.parametrize("output_dtype", float_dtypes())
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    def test_int_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert actual_min >= desired_min
        assert abs(actual_max - desired_max) < 1e-7
        assert actual_max <= desired_max

104
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    def test_dtype_int_to_int(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)
        output_max = torch.iinfo(output_dtype).max

        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(
            output_image_script,
            output_image,
            rtol=0.0,
            atol=1e-6,
121
            msg=f"{output_image_script} vs {output_image}",
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        )

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, output_max

        # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
        if input_max >= output_max:
            error_term = 0
        else:
            error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

        assert actual_min == desired_min
        assert actual_max == (desired_max + error_term)

136
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    def test_int_to_int_consistency(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)

        output_max = torch.iinfo(output_dtype).max
        if output_max <= input_max:
            return

        transform = transforms.ConvertImageDtype(output_dtype)
        inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
        output_image = inverse_transfrom(transform(input_image))

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, input_max

        assert actual_min == desired_min
        assert actual_max == desired_max
154

155

156
157
158
@pytest.mark.skipif(accimage is None, reason="accimage not available")
class TestAccImage:
    def test_accimage_to_tensor(self):
159
        trans = transforms.PILToTensor()
160

161
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
162
163
164
165
166
167
168
        output = trans(accimage.Image(GRACE_HOPPER))

        torch.testing.assert_close(output, expected_output)

    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

169
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
170
171
172
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
173
        torch.testing.assert_close(output, expected_output)
174
175

    def test_accimage_resize(self):
176
177
        trans = transforms.Compose(
            [
178
                transforms.Resize(256, interpolation=Image.LINEAR),
179
180
                transforms.PILToTensor(),
                transforms.ConvertImageDtype(dtype=torch.float),
181
182
            ]
        )
183
184
185
186

        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

187
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
188
189
190
191
192
193
194
195
196
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        assert np.abs((expected_output - output).mean()) < 1e-3
        assert (expected_output - output).var() < 1e-5
        # note the high absolute tolerance
        torch.testing.assert_close(output.numpy(), expected_output.numpy(), rtol=1e-5, atol=5e-2)

    def test_accimage_crop(self):
197
        trans = transforms.Compose(
198
            [transforms.CenterCrop(256), transforms.PILToTensor(), transforms.ConvertImageDtype(dtype=torch.float)]
199
        )
200
201
202
203

        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

204
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
205
206
207
208
209
210
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        torch.testing.assert_close(output, expected_output)


211
class TestToTensor:
212
    @pytest.mark.parametrize("channels", [1, 3, 4])
213
214
215
    def test_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.ToTensor()
216
        np_rng = np.random.RandomState(0)
217

218
219
220
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
221
        torch.testing.assert_close(output, input_data)
222

223
        ndarray = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
224
225
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
226
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
227

228
        ndarray = np_rng.rand(height, width, channels).astype(np.float32)
229
230
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1))
231
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
232
233
234

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
235
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
236
        output = trans(img)
237
        torch.testing.assert_close(input_data, output, check_dtype=False)
238
239
240
241

    def test_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.ToTensor()
242
        np_rng = np.random.RandomState(0)
243

244
        with pytest.raises(TypeError):
245
            trans(np_rng.rand(1, height, width).tolist())
246

247
        with pytest.raises(ValueError):
248
            trans(np_rng.rand(height))
249

250
        with pytest.raises(ValueError):
251
            trans(np_rng.rand(1, 1, height, width))
252

253
    @pytest.mark.parametrize("dtype", [torch.float16, torch.float, torch.double])
254
    def test_to_tensor_with_other_default_dtypes(self, dtype):
255
        np_rng = np.random.RandomState(0)
256
        current_def_dtype = torch.get_default_dtype()
257

258
        t = transforms.ToTensor()
259
        np_arr = np_rng.randint(0, 255, (32, 32, 3), dtype=np.uint8)
260
        img = Image.fromarray(np_arr)
261

262
263
264
        torch.set_default_dtype(dtype)
        res = t(img)
        assert res.dtype == dtype, f"{res.dtype} vs {dtype}"
265

266
        torch.set_default_dtype(current_def_dtype)
267

268
    @pytest.mark.parametrize("channels", [1, 3, 4])
269
270
271
    def test_pil_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.PILToTensor()
272
        np_rng = np.random.RandomState(0)
273

274
275
276
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
277
        torch.testing.assert_close(input_data, output)
278

279
        input_data = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
280
281
282
283
284
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        expected_output = input_data.transpose((2, 0, 1))
        torch.testing.assert_close(output.numpy(), expected_output)

285
        input_data = torch.as_tensor(np_rng.rand(channels, height, width).astype(np.float32))
286
287
288
        img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
        output = trans(img)  # HWC -> CHW
        expected_output = (input_data * 255).byte()
289
        torch.testing.assert_close(output, expected_output)
290

291
292
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
293
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
294
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
295
        torch.testing.assert_close(input_data, output)
296

297
298
299
    def test_pil_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.PILToTensor()
300
        np_rng = np.random.RandomState(0)
301

302
        with pytest.raises(TypeError):
303
            trans(np_rng.rand(1, height, width).tolist())
304

305
        with pytest.raises(TypeError):
306
            trans(np_rng.rand(1, height, width))
307
308


309
310
311
312
313
314
315
316
317
318
319
320
321
322
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
323
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range, antialias=True)
324
325
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
326
327
328
329
        assert (
            min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained
            and aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon
        ) or aspect_ratio_obtained == 1.0
330
331
332
333
334
335
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # single integer
        22,
        27,
        28,
        36,
        # single integer in tuple/list
        [
            22,
        ],
        (27,),
    ],
)
@pytest.mark.parametrize("max_size", (None, 37, 1000))
367
368
369
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

370
    t = transforms.Resize(osize, max_size=max_size, antialias=True)
371
372
    result = t(img)

373
    msg = f"{height}, {width} - {osize} - {max_size}"
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # two integers sequence output
        [22, 22],
        [22, 28],
        [22, 36],
        [27, 22],
        [36, 22],
        [28, 28],
        [28, 37],
        [37, 27],
        [37, 37],
    ],
)
424
425
426
427
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

428
    t = transforms.Resize(osize, antialias=True)
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


443
444
445
446
447
448
449
450
451
452
def test_resize_antialias_default_warning():

    img = Image.new("RGB", size=(10, 10), color=127)
    # We make sure we don't warn for PIL images since the default behaviour doesn't change
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.Resize((20, 20))(img)
        transforms.RandomResizedCrop((20, 20))(img)


453
454
455
456
457
458
459
460
@pytest.mark.parametrize("height, width", ((32, 64), (64, 32)))
def test_resize_size_equals_small_edge_size(height, width):
    # Non-regression test for https://github.com/pytorch/vision/issues/5405
    # max_size used to be ignored if size == small_edge_size
    max_size = 40
    img = Image.new("RGB", size=(width, height), color=127)

    small_edge = min(height, width)
461
    t = transforms.Resize(small_edge, max_size=max_size, antialias=True)
462
463
464
465
    result = t(img)
    assert max(result.size) == max_size


466
467
468
469
470
471
472
473
474
475
def test_resize_equal_input_output_sizes():
    # Regression test for https://github.com/pytorch/vision/issues/7518
    height, width = 28, 27
    img = Image.new("RGB", size=(width, height))

    t = transforms.Resize((height, width), antialias=True)
    result = t(img)
    assert result is img


476
class TestPad:
477
478
    @pytest.mark.parametrize("fill", [85, 85.0])
    def test_pad(self, fill):
479
480
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
481
        img = torch.ones(3, height, width, dtype=torch.uint8)
482
        padding = random.randint(1, 20)
483
484
485
486
        result = transforms.Compose(
            [
                transforms.ToPILImage(),
                transforms.Pad(padding, fill=fill),
487
                transforms.PILToTensor(),
488
489
            ]
        )(img)
490
491
492
493
494
495
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
496
497
        torch.testing.assert_close(h_padded, torch.full_like(h_padded, fill_value=fill), rtol=0.0, atol=0.0)
        torch.testing.assert_close(w_padded, torch.full_like(w_padded, fill_value=fill), rtol=0.0, atol=0.0)
498
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)), transforms.ToPILImage()(img))
499
500
501
502
503
504

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

505
        padding = tuple(random.randint(1, 20) for _ in range(2))
506
507
508
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

509
        padding = [random.randint(1, 20) for _ in range(4)]
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
525
        edge_padded_img = F.pad(img, 3, padding_mode="edge")
526
527
528
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
529
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8))
530
        assert transforms.PILToTensor()(edge_padded_img).size() == (3, 35, 35)
531
532

        # Pad 3 to left/right, 2 to top/bottom
533
        reflect_padded_img = F.pad(img, (3, 2), padding_mode="reflect")
534
535
536
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
537
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8))
538
        assert transforms.PILToTensor()(reflect_padded_img).size() == (3, 33, 35)
539
540

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
541
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode="symmetric")
542
543
544
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
545
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8))
546
        assert transforms.PILToTensor()(symmetric_padded_img).size() == (3, 32, 34)
547
548
549
550

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
551
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode="symmetric")
552
553
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
554
555
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8))
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8))
556
        assert transforms.PILToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
574
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])
575
576


577
@pytest.mark.parametrize(
578
    "fn, trans, kwargs",
579
580
581
582
583
584
585
    [
        (F.invert, transforms.RandomInvert, {}),
        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
        (F.autocontrast, transforms.RandomAutocontrast, {}),
        (F.equalize, transforms.RandomEqualize, {}),
586
587
588
        (F.vflip, transforms.RandomVerticalFlip, {}),
        (F.hflip, transforms.RandomHorizontalFlip, {}),
        (partial(F.to_grayscale, num_output_channels=3), transforms.RandomGrayscale, {}),
589
590
    ],
)
591
592
593
594
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_randomness(fn, trans, kwargs, seed, p):
    torch.manual_seed(seed)
595
596
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

597
598
    expected_transformed_img = fn(img, **kwargs)
    randomly_transformed_img = trans(p=p, **kwargs)(img)
599

600
601
602
603
    if p == 0:
        assert randomly_transformed_img == img
    elif p == 1:
        assert randomly_transformed_img == expected_transformed_img
604

605
    trans(**kwargs).__repr__()
606
607


608
609
610
611
612
613
614
615
616
def test_autocontrast_equal_minmax():
    img_tensor = torch.tensor([[[10]], [[128]], [[245]]], dtype=torch.uint8).expand(3, 32, 32)
    img_pil = F.to_pil_image(img_tensor)

    img_tensor = F.autocontrast(img_tensor)
    img_pil = F.autocontrast(img_pil)
    torch.testing.assert_close(img_tensor, F.pil_to_tensor(img_pil))


617
618
619
620
class TestToPil:
    def _get_1_channel_tensor_various_types():
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
621
        yield img_data_float, expected_output, "L"
622

623
624
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
625
        yield img_data_byte, expected_output, "L"
626

627
628
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        expected_output = img_data_short.numpy()
629
        yield img_data_short, expected_output, "I;16"
630

631
632
        img_data_int = torch.IntTensor(1, 4, 4).random_()
        expected_output = img_data_int.numpy()
633
        yield img_data_int, expected_output, "I"
634

635
636
637
    def _get_2d_tensor_various_types():
        img_data_float = torch.Tensor(4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
638
        yield img_data_float, expected_output, "L"
639

640
641
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
642
        yield img_data_byte, expected_output, "L"
643

644
645
        img_data_short = torch.ShortTensor(4, 4).random_()
        expected_output = img_data_short.numpy()
646
        yield img_data_short, expected_output, "I;16"
647

648
649
        img_data_int = torch.IntTensor(4, 4).random_()
        expected_output = img_data_int.numpy()
650
        yield img_data_int, expected_output, "I"
651

652
653
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_1_channel_tensor_various_types())
654
655
656
    def test_1_channel_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()
657

658
        img = transform(img_data)
659
        assert img.mode == expected_mode
660
        torch.testing.assert_close(expected_output, to_tensor(img).numpy())
661

662
663
664
    def test_1_channel_float_tensor_to_pil_image(self):
        img_data = torch.Tensor(1, 4, 4).uniform_()
        # 'F' mode for torch.FloatTensor
665
666
        img_F_mode = transforms.ToPILImage(mode="F")(img_data)
        assert img_F_mode.mode == "F"
667
        torch.testing.assert_close(
668
            np.array(Image.fromarray(img_data.squeeze(0).numpy(), mode="F")), np.array(img_F_mode)
669
        )
670

671
672
673
674
675
676
677
678
679
680
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4, 1).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4, 1).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4, 1).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4, 1).random_().numpy(), "I"),
        ],
    )
681
682
683
    def test_1_channel_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
684
        assert img.mode == expected_mode
685
686
687
        # note: we explicitly convert img's dtype because pytorch doesn't support uint16
        # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
        torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
688

689
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
690
691
    def test_2_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
692

693
694
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
695
            assert img.mode == "LA"  # default should assume LA
696
697
698
699
700
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(2):
701
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
702
703
704
705
706
707
708

    def test_2_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        transforms.ToPILImage().__repr__()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
709
            transforms.ToPILImage(mode="RGBA")(img_data)
710
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
711
            transforms.ToPILImage(mode="P")(img_data)
712
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
713
            transforms.ToPILImage(mode="RGB")(img_data)
714

715
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
716
717
718
719
720
    def test_2_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
721
            assert img.mode == "LA"  # default should assume LA
722
723
724
725
726
727
728
729
730
731
732
733
734
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(2):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_2_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(2, 4, 4).uniform_()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
735
            transforms.ToPILImage(mode="RGBA")(img_data)
736
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
737
            transforms.ToPILImage(mode="P")(img_data)
738
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
739
            transforms.ToPILImage(mode="RGB")(img_data)
740

741
742
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_2d_tensor_various_types())
743
744
745
746
747
    def test_2d_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img = transform(img_data)
748
        assert img.mode == expected_mode
749
750
        torch.testing.assert_close(expected_output, to_tensor(img).numpy()[0])

751
752
753
754
755
756
757
758
759
760
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4).random_().numpy(), "I"),
        ],
    )
761
762
763
    def test_2d_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
764
        assert img.mode == expected_mode
765
        np.testing.assert_allclose(img_data, img)
766

767
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
768
769
770
    def test_3_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
771

772
773
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
774
            assert img.mode == "RGB"  # default should assume RGB
775
776
777
778
779
780
781
782
783
784
785
786
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_3_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
787
            transforms.ToPILImage(mode="RGBA")(img_data)
788
        with pytest.raises(ValueError, match=error_message_3d):
789
            transforms.ToPILImage(mode="P")(img_data)
790
        with pytest.raises(ValueError, match=error_message_3d):
791
            transforms.ToPILImage(mode="LA")(img_data)
792

793
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
794
795
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

796
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
797
798
799
800
801
    def test_3_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
802
            assert img.mode == "RGB"  # default should assume RGB
803
804
805
806
807
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
808
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
809
810
811
812
813
814
815
816
817
818

    def test_3_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
819
            transforms.ToPILImage(mode="RGBA")(img_data)
820
        with pytest.raises(ValueError, match=error_message_3d):
821
            transforms.ToPILImage(mode="P")(img_data)
822
        with pytest.raises(ValueError, match=error_message_3d):
823
            transforms.ToPILImage(mode="LA")(img_data)
824

825
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
826
827
828
829
830
831
    def test_4_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(4, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
832
            assert img.mode == "RGBA"  # default should assume RGBA
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(4):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_4_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(4, 4, 4).uniform_()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
847
            transforms.ToPILImage(mode="RGB")(img_data)
848
        with pytest.raises(ValueError, match=error_message_4d):
849
            transforms.ToPILImage(mode="P")(img_data)
850
        with pytest.raises(ValueError, match=error_message_4d):
851
            transforms.ToPILImage(mode="LA")(img_data)
852

853
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
854
855
856
857
858
    def test_4_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
859
            assert img.mode == "RGBA"  # default should assume RGBA
860
861
862
863
864
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(4):
865
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
866
867
868
869
870
871
872

    def test_4_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
873
            transforms.ToPILImage(mode="RGB")(img_data)
874
        with pytest.raises(ValueError, match=error_message_4d):
875
            transforms.ToPILImage(mode="P")(img_data)
876
        with pytest.raises(ValueError, match=error_message_4d):
877
            transforms.ToPILImage(mode="LA")(img_data)
878
879
880

    def test_ndarray_bad_types_to_pil_image(self):
        trans = transforms.ToPILImage()
881
        reg_msg = r"Input type \w+ is not supported"
882
883
884
885
886
887
888
889
890
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.int64))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint16))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint32))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.float64))

891
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
892
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
893
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
894
895
896
            transforms.ToPILImage()(np.ones([4, 4, 6]))

    def test_tensor_bad_types_to_pil_image(self):
897
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
898
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
899
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
900
            transforms.ToPILImage()(torch.ones(6, 4, 4))
901
902


903
904
905
906
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
907
    x_pil = Image.fromarray(x_np, mode="RGB")
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
933
    x_pil = Image.fromarray(x_np, mode="RGB")
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
959
    x_pil = Image.fromarray(x_np, mode="RGB")
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
    x_data = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        65,
        108,
        101,
        120,
        97,
        110,
        100,
        101,
        114,
        32,
        86,
        114,
        121,
        110,
        105,
        111,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1040
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1041
    x_pil = Image.fromarray(x_np, mode="RGB")
1042
1043
1044
1045
1046
1047
1048
1049
1050

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        30,
        30,
        74,
        103,
        96,
        114,
        97,
        110,
        100,
        101,
        114,
        32,
        81,
        103,
        108,
        102,
        101,
        107,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1101
1102
1103
1104
1105
1106
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        46,
        118,
        111,
        132,
        97,
        110,
        100,
        101,
        114,
        32,
        95,
        135,
        146,
        126,
        112,
        119,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1157
1158
1159
1160
1161
1162
1163
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1164
    x_pil = Image.fromarray(x_np, mode="RGB")
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1176
    x_pil = Image.fromarray(x_np, mode="RGB")
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1202
    x_rgb = Image.fromarray(x_np, mode="RGB")
1203

1204
1205
1206
1207
1208
1209
1210
    x_l = x_rgb.convert("L")
    assert F.adjust_brightness(x_l, 2).mode == "L"
    assert F.adjust_saturation(x_l, 2).mode == "L"
    assert F.adjust_contrast(x_l, 2).mode == "L"
    assert F.adjust_hue(x_l, 0.4).mode == "L"
    assert F.adjust_sharpness(x_l, 2).mode == "L"
    assert F.adjust_gamma(x_l, 0.5).mode == "L"
1211
1212


1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


1249
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1326
1327
1328
1329
1330
1331
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1332
1333
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1334
1335
1336
1337
1338
1339
1340
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
1341
1342
    assert gray_pil_1.mode == "L", "mode should be L"
    assert gray_np_1.shape == tuple(x_shape[0:2]), "should be 1 channel"
1343
1344
1345
1346
1347
1348
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1349
1350
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1351
1352
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
1353
    assert_equal(gray_np, gray_np_2[:, :, 0])
1354
1355
1356
1357
1358

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1359
1360
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1361
1362
1363
1364
1365
1366
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
1367
1368
    assert gray_pil_4.mode == "RGB", "mode should be RGB"
    assert gray_np_4.shape == tuple(x_shape), "should be 3 channel"
1369
1370
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
1371
    assert_equal(gray_np, gray_np_4[:, :, 0])
1372
1373
1374
1375
1376

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


1377
1378
1379
1380
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_random_apply(p, seed):
    torch.manual_seed(seed)
1381
    random_apply_transform = transforms.RandomApply([transforms.RandomRotation((45, 50))], p=p)
1382
1383
1384
1385
1386
1387
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_apply_transform(img)
    if p == 0:
        assert out == img
    elif p == 1:
        assert out != img
1388

1389
1390
    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()
1391
1392


1393
1394
1395
1396
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("proba_passthrough", (0, 1))
def test_random_choice(proba_passthrough, seed):
    random.seed(seed)  # RandomChoice relies on python builtin random.choice, not pytorch
1397

1398
    random_choice_transform = transforms.RandomChoice(
1399
        [
1400
            lambda x: x,  # passthrough
1401
            transforms.RandomRotation((45, 50)),
1402
        ],
1403
        p=[proba_passthrough, 1 - proba_passthrough],
1404
1405
    )

1406
1407
1408
1409
1410
1411
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_choice_transform(img)
    if proba_passthrough == 1:
        assert out == img
    elif proba_passthrough == 0:
        assert out != img
1412
1413
1414
1415
1416

    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


1417
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1418
1419
1420
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
1421
    random_order_transform = transforms.RandomOrder([transforms.Resize(20, antialias=True), transforms.CenterCrop(10)])
1422
1423
1424
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
1425
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20, antialias=True)(img))
1426
1427
1428
1429
1430
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

1431
    p_value = stats.binomtest(num_normal_order, num_samples, p=0.5).pvalue
1432
1433
1434
1435
1436
1437
1438
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


1439
1440
1441
1442
1443
1444
1445
1446
def test_linear_transformation():
    num_samples = 1000
    x = torch.randn(num_samples, 3, 10, 10)
    flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
    # compute principal components
    sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
    u, s, _ = np.linalg.svd(sigma.numpy())
    zca_epsilon = 1e-10  # avoid division by 0
1447
    d = torch.Tensor(np.diag(1.0 / np.sqrt(s + zca_epsilon)))
1448
1449
    u = torch.Tensor(u)
    principal_components = torch.mm(torch.mm(u, d), u.t())
1450
    mean_vector = torch.sum(flat_x, dim=0) / flat_x.size(0)
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
    # initialize whitening matrix
    whitening = transforms.LinearTransformation(principal_components, mean_vector)
    # estimate covariance and mean using weak law of large number
    num_features = flat_x.size(1)
    cov = 0.0
    mean = 0.0
    for i in x:
        xwhite = whitening(i)
        xwhite = xwhite.view(1, -1).numpy()
        cov += np.dot(xwhite, xwhite.T) / num_features
        mean += np.sum(xwhite) / num_features
    # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1463
1464
1465
1466
1467
1468
    torch.testing.assert_close(
        cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False, msg="cov not close to 1"
    )
    torch.testing.assert_close(
        mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False, msg="mean not close to 0"
    )
1469
1470
1471
1472
1473

    # Checking if LinearTransformation can be printed as string
    whitening.__repr__()


1474
@pytest.mark.parametrize("dtype", int_dtypes())
1475
1476
1477
1478
1479
1480
1481
1482
1483
def test_max_value(dtype):

    assert F_t._max_value(dtype) == torch.iinfo(dtype).max
    # remove float testing as it can lead to errors such as
    # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
    # for dtype in float_dtypes():
    # self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)


1484
1485
1486
1487
1488
1489
1490
1491
1492
@pytest.mark.xfail(
    reason="torch.iinfo() is not supported by torchscript. See https://github.com/pytorch/pytorch/issues/41492."
)
def test_max_value_iinfo():
    @torch.jit.script
    def max_value(image: torch.Tensor) -> int:
        return 1 if image.is_floating_point() else torch.iinfo(image.dtype).max


1493
1494
@pytest.mark.parametrize("should_vflip", [True, False])
@pytest.mark.parametrize("single_dim", [True, False])
1495
1496
1497
1498
1499
1500
1501
1502
1503
def test_ten_crop(should_vflip, single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
1504
        transform = transforms.TenCrop(crop_h, vertical_flip=should_vflip)
1505
1506
        five_crop = transforms.FiveCrop(crop_h)
    else:
1507
        transform = transforms.TenCrop((crop_h, crop_w), vertical_flip=should_vflip)
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
        five_crop = transforms.FiveCrop((crop_h, crop_w))

    img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
    results = transform(img)
    expected_output = five_crop(img)

    # Checking if FiveCrop and TenCrop can be printed as string
    transform.__repr__()
    five_crop.__repr__()

    if should_vflip:
1519
        vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
1520
1521
        expected_output += five_crop(vflipped_img)
    else:
1522
        hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
1523
1524
1525
1526
1527
1528
        expected_output += five_crop(hflipped_img)

    assert len(results) == 10
    assert results == expected_output


1529
@pytest.mark.parametrize("single_dim", [True, False])
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
def test_five_crop(single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
        transform = transforms.FiveCrop(crop_h)
    else:
        transform = transforms.FiveCrop((crop_h, crop_w))

    img = torch.FloatTensor(3, h, w).uniform_()

    results = transform(to_pil_image(img))

    assert len(results) == 5
    for crop in results:
        assert crop.size == (crop_w, crop_h)

    to_pil_image = transforms.ToPILImage()
    tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
1553
1554
1555
    tr = to_pil_image(img[:, 0:crop_h, w - crop_w :])
    bl = to_pil_image(img[:, h - crop_h :, 0:crop_w])
    br = to_pil_image(img[:, h - crop_h :, w - crop_w :])
1556
1557
1558
1559
1560
    center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
    expected_output = (tl, tr, bl, br, center)
    assert results == expected_output


1561
1562
1563
@pytest.mark.parametrize("policy", transforms.AutoAugmentPolicy)
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1564
def test_autoaugment(policy, fill, grayscale):
1565
1566
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1567
1568
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1569
1570
1571
1572
1573
1574
    transform = transforms.AutoAugment(policy=policy, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1575
1576
1577
1578
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1579
def test_randaugment(num_ops, magnitude, fill, grayscale):
1580
1581
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1582
1583
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1584
1585
1586
1587
1588
1589
    transform = transforms.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1590
1591
1592
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("num_magnitude_bins", [10, 13, 30])
@pytest.mark.parametrize("grayscale", [True, False])
1593
def test_trivialaugmentwide(fill, num_magnitude_bins, grayscale):
1594
1595
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1596
1597
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1598
1599
1600
1601
1602
1603
    transform = transforms.TrivialAugmentWide(fill=fill, num_magnitude_bins=num_magnitude_bins)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("severity", [1, 10])
@pytest.mark.parametrize("mixture_width", [1, 2])
@pytest.mark.parametrize("chain_depth", [-1, 2])
@pytest.mark.parametrize("all_ops", [True, False])
@pytest.mark.parametrize("grayscale", [True, False])
def test_augmix(fill, severity, mixture_width, chain_depth, all_ops, grayscale):
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
    transform = transforms.AugMix(
        fill=fill, severity=severity, mixture_width=mixture_width, chain_depth=chain_depth, all_ops=all_ops
    )
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1623
1624
1625
1626
1627
def test_random_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2
1628
    img = torch.ones(3, height, width, dtype=torch.uint8)
1629
1630
1631
1632
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
1633
            transforms.PILToTensor(),
1634
1635
        ]
    )(img)
1636
1637
1638
1639
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    padding = random.randint(1, 20)
1640
1641
1642
1643
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
1644
            transforms.PILToTensor(),
1645
1646
        ]
    )(img)
1647
1648
1649
    assert result.size(1) == oheight
    assert result.size(2) == owidth

1650
    result = transforms.Compose(
1651
        [transforms.ToPILImage(), transforms.RandomCrop((height, width)), transforms.PILToTensor()]
1652
    )(img)
1653
1654
1655
1656
    assert result.size(1) == height
    assert result.size(2) == width
    torch.testing.assert_close(result, img)

1657
1658
1659
1660
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
1661
            transforms.PILToTensor(),
1662
1663
        ]
    )(img)
1664
1665
1666
    assert result.size(1) == height + 1
    assert result.size(2) == width + 1

1667
    t = transforms.RandomCrop(33)
1668
    img = torch.ones(3, 32, 32)
Nicolas Hug's avatar
Nicolas Hug committed
1669
    with pytest.raises(ValueError, match=r"Required crop size .+ is larger than input image size .+"):
1670
1671
1672
        t(img)


1673
1674
1675
1676
1677
1678
def test_center_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2

1679
    img = torch.ones(3, height, width, dtype=torch.uint8)
1680
1681
    oh1 = (height - oheight) // 2
    ow1 = (width - owidth) // 2
1682
    imgnarrow = img[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth]
1683
    imgnarrow.fill_(0)
1684
1685
1686
1687
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1688
            transforms.PILToTensor(),
1689
1690
        ]
    )(img)
1691
1692
1693
    assert result.sum() == 0
    oheight += 1
    owidth += 1
1694
1695
1696
1697
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1698
            transforms.PILToTensor(),
1699
1700
        ]
    )(img)
1701
1702
1703
1704
    sum1 = result.sum()
    assert sum1 > 1
    oheight += 1
    owidth += 1
1705
1706
1707
1708
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1709
            transforms.PILToTensor(),
1710
1711
        ]
    )(img)
1712
1713
1714
1715
1716
    sum2 = result.sum()
    assert sum2 > 0
    assert sum2 > sum1


1717
1718
1719
1720
@pytest.mark.parametrize("odd_image_size", (True, False))
@pytest.mark.parametrize("delta", (1, 3, 5))
@pytest.mark.parametrize("delta_width", (-2, -1, 0, 1, 2))
@pytest.mark.parametrize("delta_height", (-2, -1, 0, 1, 2))
1721
def test_center_crop_2(odd_image_size, delta, delta_width, delta_height):
1722
    """Tests when center crop size is larger than image size, along any dimension"""
1723
1724
1725
1726
1727
1728
1729
1730
1731

    # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
    input_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
    if odd_image_size:
        input_image_size = (input_image_size[0] + 1, input_image_size[1] + 1)

    delta_height *= delta
    delta_width *= delta

1732
    img = torch.ones(3, *input_image_size, dtype=torch.uint8)
1733
1734
1735
    crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

    # Test both transforms, one with PIL input and one with tensor
1736
    output_pil = transforms.Compose(
1737
        [transforms.ToPILImage(), transforms.CenterCrop(crop_size), transforms.PILToTensor()],
1738
1739
1740
1741
1742
1743
1744
1745
    )(img)
    assert output_pil.size()[1:3] == crop_size

    output_tensor = transforms.CenterCrop(crop_size)(img)
    assert output_tensor.size()[1:3] == crop_size

    # Ensure output for PIL and Tensor are equal
    assert_equal(
1746
1747
        output_tensor,
        output_pil,
1748
        msg=f"image_size: {input_image_size} crop_size: {crop_size}",
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
    )

    # Check if content in center of both image and cropped output is same.
    center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
    crop_center_tl, input_center_tl = [0, 0], [0, 0]
    for index in range(2):
        if crop_size[index] > input_image_size[index]:
            crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
        else:
            input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

    output_center = output_pil[
        :,
1762
1763
        crop_center_tl[0] : crop_center_tl[0] + center_size[0],
        crop_center_tl[1] : crop_center_tl[1] + center_size[1],
1764
1765
1766
1767
    ]

    img_center = img[
        :,
1768
1769
        input_center_tl[0] : input_center_tl[0] + center_size[0],
        input_center_tl[1] : input_center_tl[1] + center_size[1],
1770
1771
    ]

1772
    assert_equal(output_center, img_center)
1773
1774
1775
1776
1777
1778
1779
1780


def test_color_jitter():
    color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1781
1782
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

    for _ in range(10):
        y_pil = color_jitter(x_pil)
        assert y_pil.mode == x_pil.mode

        y_pil_2 = color_jitter(x_pil_2)
        assert y_pil_2.mode == x_pil_2.mode

    # Checking if ColorJitter can be printed as string
    color_jitter.__repr__()


1795
1796
1797
1798
1799
1800
@pytest.mark.parametrize("hue", [1, (-1, 1)])
def test_color_jitter_hue_out_of_bounds(hue):
    with pytest.raises(ValueError, match=re.escape("hue values should be between (-0.5, 0.5)")):
        transforms.ColorJitter(hue=hue)


1801
@pytest.mark.parametrize("seed", range(10))
1802
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1803
1804
def test_random_erasing(seed):
    torch.random.manual_seed(seed)
1805
1806
    img = torch.ones(3, 128, 128)

1807
1808
1809
1810
1811
1812
1813
1814
1815
    t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.0))
    y, x, h, w, v = t.get_params(
        img,
        t.scale,
        t.ratio,
        [
            t.value,
        ],
    )
1816
1817
1818
    aspect_ratio = h / w
    # Add some tolerance due to the rounding and int conversion used in the transform
    tol = 0.05
1819
    assert 1 / 3 - tol <= aspect_ratio <= 3 + tol
1820

1821
    # Make sure that h > w and h < w are equally likely (log-scale sampling)
1822
1823
1824
1825
    aspect_ratios = []
    random.seed(42)
    trial = 1000
    for _ in range(trial):
1826
1827
1828
1829
1830
1831
1832
1833
        y, x, h, w, v = t.get_params(
            img,
            t.scale,
            t.ratio,
            [
                t.value,
            ],
        )
1834
1835
1836
        aspect_ratios.append(h / w)

    count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
1837
    p_value = stats.binomtest(count_bigger_then_ones, trial, p=0.5).pvalue
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
    assert p_value > 0.0001

    # Checking if RandomErasing can be printed as string
    t.__repr__()


def test_random_rotation():

    with pytest.raises(ValueError):
        transforms.RandomRotation(-0.7)

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7])

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7, 0, 0.7])

    t = transforms.RandomRotation(0, fill=None)
    assert t.fill == 0

    t = transforms.RandomRotation(10)
    angle = t.get_params(t.degrees)
1860
    assert angle > -10 and angle < 10
1861
1862
1863

    t = transforms.RandomRotation((-10, 10))
    angle = t.get_params(t.degrees)
1864
    assert -10 < angle < 10
1865
1866
1867
1868

    # Checking if RandomRotation can be printed as string
    t.__repr__()

1869
1870
1871
    t = transforms.RandomRotation((-10, 10), interpolation=Image.BILINEAR)
    assert t.interpolation == transforms.InterpolationMode.BILINEAR

1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

def test_random_rotation_error():
    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomRotation(0, fill={})


def test_randomperspective():
    for _ in range(10):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        perp = transforms.RandomPerspective()
        startpoints, endpoints = perp.get_params(width, height, 0.5)
        tr_img = F.perspective(img, startpoints, endpoints)
1889
1890
        tr_img2 = F.convert_image_dtype(F.pil_to_tensor(F.perspective(tr_img, endpoints, startpoints)))
        tr_img = F.convert_image_dtype(F.pil_to_tensor(tr_img))
1891
1892
        assert img.size[0] == width
        assert img.size[1] == height
1893
1894
1895
        assert torch.nn.functional.mse_loss(
            tr_img, F.convert_image_dtype(F.pil_to_tensor(img))
        ) + 0.3 > torch.nn.functional.mse_loss(tr_img2, F.convert_image_dtype(F.pil_to_tensor(img)))
1896
1897


1898
@pytest.mark.parametrize("seed", range(10))
1899
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1900
1901
def test_randomperspective_fill(mode, seed):
    torch.random.manual_seed(seed)
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomPerspective(fill={})

    t = transforms.RandomPerspective(fill=None)
    assert t.fill == 0

    height = 100
    width = 100
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    fill = 127
    num_bands = len(mode)

    img_conv = img.convert(mode)
    perspective = transforms.RandomPerspective(p=1, fill=fill)
    tr_img = perspective(img_conv)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
    tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    wrong_num_bands = num_bands + 1
    with pytest.raises(ValueError):
        F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))


1940
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1941
1942
def test_normalize():
    def samples_from_standard_normal(tensor):
1943
        p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
        return p_value > 0.0001

    random_state = random.getstate()
    random.seed(42)
    for channels in [1, 3]:
        img = torch.rand(channels, 10, 10)
        mean = [img[c].mean() for c in range(channels)]
        std = [img[c].std() for c in range(channels)]
        normalized = transforms.Normalize(mean, std)(img)
        assert samples_from_standard_normal(normalized)
    random.setstate(random_state)

    # Checking if Normalize can be printed as string
    transforms.Normalize(mean, std).__repr__()

    # Checking the optional in-place behaviour
    tensor = torch.rand((1, 16, 16))
    tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
    assert_equal(tensor, tensor_inplace)


1965
1966
@pytest.mark.parametrize("dtype1", [torch.float32, torch.float64])
@pytest.mark.parametrize("dtype2", [torch.int64, torch.float32, torch.float64])
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
def test_normalize_different_dtype(dtype1, dtype2):
    img = torch.rand(3, 10, 10, dtype=dtype1)
    mean = torch.tensor([1, 2, 3], dtype=dtype2)
    std = torch.tensor([1, 2, 1], dtype=dtype2)
    # checks that it doesn't crash
    transforms.functional.normalize(img, mean, std)


def test_normalize_3d_tensor():
    torch.manual_seed(28)
    n_channels = 3
    img_size = 10
    mean = torch.rand(n_channels)
    std = torch.rand(n_channels)
    img = torch.rand(n_channels, img_size, img_size)
    target = F.normalize(img, mean, std)

    mean_unsqueezed = mean.view(-1, 1, 1)
    std_unsqueezed = std.view(-1, 1, 1)
    result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
1987
1988
1989
    result2 = F.normalize(
        img, mean_unsqueezed.repeat(1, img_size, img_size), std_unsqueezed.repeat(1, img_size, img_size)
    )
1990
1991
1992
1993
    torch.testing.assert_close(target, result1)
    torch.testing.assert_close(target, result2)


1994
class TestAffine:
1995
    @pytest.fixture(scope="class")
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
    def input_img(self):
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        for pt in [(16, 16), (20, 16), (20, 20)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
        return input_img

    def test_affine_translate_seq(self, input_img):
        with pytest.raises(TypeError, match=r"Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)

2008
    @pytest.fixture(scope="class")
2009
2010
2011
2012
2013
2014
2015
2016
2017
    def pil_image(self, input_img):
        return F.to_pil_image(input_img)

    def _to_3x3_inv(self, inv_result_matrix):
        result_matrix = np.zeros((3, 3))
        result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
        result_matrix[2, 2] = 1
        return np.linalg.inv(result_matrix)

2018
    def _test_transformation(self, angle, translate, scale, shear, pil_image, input_img, center=None):
2019
2020
2021

        a_rad = math.radians(angle)
        s_rad = [math.radians(sh_) for sh_ in shear]
2022
        cnt = [20, 20] if center is None else center
2023
2024
2025
2026
2027
2028
        cx, cy = cnt
        tx, ty = translate
        sx, sy = s_rad
        rot = a_rad

        # 1) Check transformation matrix:
2029
2030
        C = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        T = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
2031
2032
2033
        Cinv = np.linalg.inv(C)

        RS = np.array(
2034
2035
2036
2037
2038
2039
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
2040

2041
        SHx = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
2042

2043
        SHy = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
2044
2045
2046
2047
2048

        RSS = np.matmul(RS, np.matmul(SHy, SHx))

        true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

2049
2050
2051
        result_matrix = self._to_3x3_inv(
            F._get_inverse_affine_matrix(center=cnt, angle=angle, translate=translate, scale=scale, shear=shear)
        )
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
        assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
        # 2) Perform inverse mapping:
        true_result = np.zeros((40, 40, 3), dtype=np.uint8)
        inv_true_matrix = np.linalg.inv(true_matrix)
        for y in range(true_result.shape[0]):
            for x in range(true_result.shape[1]):
                # Same as for PIL:
                # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                # src/libImaging/Geometry.c#L1060
                input_pt = np.array([x + 0.5, y + 0.5, 1.0])
2062
                res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(int)
2063
2064
2065
2066
                _x, _y = res[:2]
                if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                    true_result[y, x, :] = input_img[_y, _x, :]

2067
        result = F.affine(pil_image, angle=angle, translate=translate, scale=scale, shear=shear, center=center)
2068
2069
2070
2071
2072
        assert result.size == pil_image.size
        # Compute number of different pixels:
        np_result = np.array(result)
        n_diff_pixels = np.sum(np_result != true_result) / 3
        # Accept 3 wrong pixels
2073
2074
2075
        error_msg = (
            f"angle={angle}, translate={translate}, scale={scale}, shear={shear}\nn diff pixels={n_diff_pixels}\n"
        )
2076
2077
2078
2079
2080
        assert n_diff_pixels < 3, error_msg

    def test_transformation_discrete(self, pil_image, input_img):
        # Test rotation
        angle = 45
2081
2082
2083
        self._test_transformation(
            angle=angle, translate=(0, 0), scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2084

2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
        # Test rotation
        angle = 45
        self._test_transformation(
            angle=angle,
            translate=(0, 0),
            scale=1.0,
            shear=(0.0, 0.0),
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2097
2098
        # Test translation
        translate = [10, 15]
2099
2100
2101
        self._test_transformation(
            angle=0.0, translate=translate, scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2102
2103
2104

        # Test scale
        scale = 1.2
2105
2106
2107
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=scale, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2108
2109
2110

        # Test shear
        shear = [45.0, 25.0]
2111
2112
2113
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=1.0, shear=shear, pil_image=pil_image, input_img=input_img
        )
2114

2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
        # Test shear with top-left as center
        shear = [45.0, 25.0]
        self._test_transformation(
            angle=0.0,
            translate=(0.0, 0.0),
            scale=1.0,
            shear=shear,
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2127
2128
2129
2130
2131
    @pytest.mark.parametrize("angle", range(-90, 90, 36))
    @pytest.mark.parametrize("translate", range(-10, 10, 5))
    @pytest.mark.parametrize("scale", [0.77, 1.0, 1.27])
    @pytest.mark.parametrize("shear", range(-15, 15, 5))
    def test_transformation_range(self, angle, translate, scale, shear, pil_image, input_img):
2132
2133
2134
2135
2136
2137
2138
2139
        self._test_transformation(
            angle=angle,
            translate=(translate, translate),
            scale=scale,
            shear=(shear, shear),
            pil_image=pil_image,
            input_img=input_img,
        )
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186


def test_random_affine():

    with pytest.raises(ValueError):
        transforms.RandomAffine(-0.7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7, 0, 0.7])
    with pytest.raises(TypeError):
        transforms.RandomAffine([-90, 90], translate=2.0)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomAffine(0, fill={})

    t = transforms.RandomAffine(0, fill=None)
    assert t.fill == 0

    x = np.zeros((100, 100, 3), dtype=np.uint8)
    img = F.to_pil_image(x)

    t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
    for _ in range(100):
2187
        angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear, img_size=img.size)
2188
        assert -10 < angle < 10
2189
2190
        assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5
        assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
        assert 0.7 < scale < 1.3
        assert -10 < shear[0] < 10
        assert -20 < shear[1] < 40

    # Checking if RandomAffine can be printed as string
    t.__repr__()

    t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
    assert "bilinear" in t.__repr__()

2201
2202
2203
    t = transforms.RandomAffine(10, interpolation=Image.BILINEAR)
    assert t.interpolation == transforms.InterpolationMode.BILINEAR

2204

2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
def test_elastic_transformation():
    with pytest.raises(TypeError, match=r"alpha should be float or a sequence of floats"):
        transforms.ElasticTransform(alpha=True, sigma=2.0)
    with pytest.raises(TypeError, match=r"alpha should be a sequence of floats"):
        transforms.ElasticTransform(alpha=[1.0, True], sigma=2.0)
    with pytest.raises(ValueError, match=r"alpha is a sequence its length should be 2"):
        transforms.ElasticTransform(alpha=[1.0, 0.0, 1.0], sigma=2.0)

    with pytest.raises(TypeError, match=r"sigma should be float or a sequence of floats"):
        transforms.ElasticTransform(alpha=2.0, sigma=True)
    with pytest.raises(TypeError, match=r"sigma should be a sequence of floats"):
        transforms.ElasticTransform(alpha=2.0, sigma=[1.0, True])
    with pytest.raises(ValueError, match=r"sigma is a sequence its length should be 2"):
        transforms.ElasticTransform(alpha=2.0, sigma=[1.0, 0.0, 1.0])

2220
2221
    t = transforms.transforms.ElasticTransform(alpha=2.0, sigma=2.0, interpolation=Image.BILINEAR)
    assert t.interpolation == transforms.InterpolationMode.BILINEAR
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240

    with pytest.raises(TypeError, match=r"fill should be int or float"):
        transforms.ElasticTransform(alpha=1.0, sigma=1.0, fill={})

    x = torch.randint(0, 256, (3, 32, 32), dtype=torch.uint8)
    img = F.to_pil_image(x)
    t = transforms.ElasticTransform(alpha=0.0, sigma=0.0)
    transformed_img = t(img)
    assert transformed_img == img

    # Smoke test on PIL images
    t = transforms.ElasticTransform(alpha=0.5, sigma=0.23)
    transformed_img = t(img)
    assert isinstance(transformed_img, Image.Image)

    # Checking if ElasticTransform can be printed as string
    t.__repr__()


2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
def test_random_grayscale_with_grayscale_input():
    transform = transforms.RandomGrayscale(p=1.0)

    image_tensor = torch.randint(0, 256, (1, 16, 16), dtype=torch.uint8)
    output_tensor = transform(image_tensor)
    torch.testing.assert_close(output_tensor, image_tensor)

    image_pil = F.to_pil_image(image_tensor)
    output_pil = transform(image_pil)
    torch.testing.assert_close(F.pil_to_tensor(output_pil), image_tensor)


2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
# TODO: remove in 0.17 when we can delete functional_pil.py and functional_tensor.py
@pytest.mark.parametrize(
    "import_statement",
    (
        "from torchvision.transforms import functional_pil",
        "from torchvision.transforms import functional_tensor",
        "from torchvision.transforms.functional_tensor import resize",
        "from torchvision.transforms.functional_pil import resize",
    ),
)
@pytest.mark.parametrize("from_private", (True, False))
def test_functional_deprecation_warning(import_statement, from_private):
    if from_private:
        import_statement = import_statement.replace("functional", "_functional")
        source = f"""
        import warnings

        with warnings.catch_warnings():
            warnings.simplefilter("error")
            {import_statement}
        """
    else:
        source = f"""
        import pytest
        with pytest.warns(UserWarning, match="removed in 0.17"):
            {import_statement}
        """
    assert_run_python_script(textwrap.dedent(source))


2283
if __name__ == "__main__":
2284
    pytest.main([__file__])