test_transforms.py 79.7 KB
Newer Older
1
import math
2
import os
3
import random
4
import re
5
from functools import partial
6
7
8

import numpy as np
import pytest
9
10
import torch
import torchvision.transforms as transforms
11
import torchvision.transforms.functional as F
12
import torchvision.transforms.functional_tensor as F_t
13
from PIL import Image
14
15
from torch._utils_internal import get_file_path_2

16
17
18
19
20
try:
    import accimage
except ImportError:
    accimage = None

21
22
23
24
25
try:
    from scipy import stats
except ImportError:
    stats = None

26
from common_utils import cycle_over, int_dtypes, float_dtypes, assert_equal
27
28


29
GRACE_HOPPER = get_file_path_2(
30
31
    os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
)
32
33


34
def _get_grayscale_test_image(img, fill=None):
35
36
    img = img.convert("L")
    fill = (fill[0],) if isinstance(fill, tuple) else fill
37
38
39
    return img, fill


40
class TestConvertImageDtype:
41
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(float_dtypes()))
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    def test_float_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert abs(actual_max - desired_max) < 1e-7

58
59
    @pytest.mark.parametrize("input_dtype", float_dtypes())
    @pytest.mark.parametrize("output_dtype", int_dtypes())
60
61
62
63
64
65
    def test_float_to_int(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
66
            input_dtype == torch.float64 and output_dtype == torch.int64
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        ):
            with pytest.raises(RuntimeError):
                transform(input_image)
        else:
            output_image = transform(input_image)
            output_image_script = transform_script(input_image, output_dtype)

            torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

            actual_min, actual_max = output_image.tolist()
            desired_min, desired_max = 0, torch.iinfo(output_dtype).max

            assert actual_min == desired_min
            assert actual_max == desired_max

82
83
    @pytest.mark.parametrize("input_dtype", int_dtypes())
    @pytest.mark.parametrize("output_dtype", float_dtypes())
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    def test_int_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert actual_min >= desired_min
        assert abs(actual_max - desired_max) < 1e-7
        assert actual_max <= desired_max

102
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def test_dtype_int_to_int(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)
        output_max = torch.iinfo(output_dtype).max

        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(
            output_image_script,
            output_image,
            rtol=0.0,
            atol=1e-6,
119
            msg=f"{output_image_script} vs {output_image}",
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        )

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, output_max

        # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
        if input_max >= output_max:
            error_term = 0
        else:
            error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

        assert actual_min == desired_min
        assert actual_max == (desired_max + error_term)

134
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def test_int_to_int_consistency(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)

        output_max = torch.iinfo(output_dtype).max
        if output_max <= input_max:
            return

        transform = transforms.ConvertImageDtype(output_dtype)
        inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
        output_image = inverse_transfrom(transform(input_image))

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, input_max

        assert actual_min == desired_min
        assert actual_max == desired_max
152

153

154
155
156
157
158
@pytest.mark.skipif(accimage is None, reason="accimage not available")
class TestAccImage:
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

159
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
160
161
162
163
164
165
166
        output = trans(accimage.Image(GRACE_HOPPER))

        torch.testing.assert_close(output, expected_output)

    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

167
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
168
169
170
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
171
        torch.testing.assert_close(output, expected_output)
172
173

    def test_accimage_resize(self):
174
175
176
177
178
179
        trans = transforms.Compose(
            [
                transforms.Resize(256, interpolation=Image.LINEAR),
                transforms.ToTensor(),
            ]
        )
180
181
182
183

        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

184
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
185
186
187
188
189
190
191
192
193
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        assert np.abs((expected_output - output).mean()) < 1e-3
        assert (expected_output - output).var() < 1e-5
        # note the high absolute tolerance
        torch.testing.assert_close(output.numpy(), expected_output.numpy(), rtol=1e-5, atol=5e-2)

    def test_accimage_crop(self):
194
195
196
197
198
199
        trans = transforms.Compose(
            [
                transforms.CenterCrop(256),
                transforms.ToTensor(),
            ]
        )
200
201
202
203

        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

204
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
205
206
207
208
209
210
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        torch.testing.assert_close(output, expected_output)


211
class TestToTensor:
212
    @pytest.mark.parametrize("channels", [1, 3, 4])
213
214
215
    def test_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.ToTensor()
216
        np_rng = np.random.RandomState(0)
217

218
219
220
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
221
        torch.testing.assert_close(output, input_data)
222

223
        ndarray = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
224
225
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
226
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
227

228
        ndarray = np_rng.rand(height, width, channels).astype(np.float32)
229
230
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1))
231
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
232
233
234

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
235
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
236
        output = trans(img)
237
        torch.testing.assert_close(input_data, output, check_dtype=False)
238
239
240
241

    def test_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.ToTensor()
242
        np_rng = np.random.RandomState(0)
243

244
        with pytest.raises(TypeError):
245
            trans(np_rng.rand(1, height, width).tolist())
246

247
        with pytest.raises(ValueError):
248
            trans(np_rng.rand(height))
249

250
        with pytest.raises(ValueError):
251
            trans(np_rng.rand(1, 1, height, width))
252

253
    @pytest.mark.parametrize("dtype", [torch.float16, torch.float, torch.double])
254
    def test_to_tensor_with_other_default_dtypes(self, dtype):
255
        np_rng = np.random.RandomState(0)
256
        current_def_dtype = torch.get_default_dtype()
257

258
        t = transforms.ToTensor()
259
        np_arr = np_rng.randint(0, 255, (32, 32, 3), dtype=np.uint8)
260
        img = Image.fromarray(np_arr)
261

262
263
264
        torch.set_default_dtype(dtype)
        res = t(img)
        assert res.dtype == dtype, f"{res.dtype} vs {dtype}"
265

266
        torch.set_default_dtype(current_def_dtype)
267

268
    @pytest.mark.parametrize("channels", [1, 3, 4])
269
270
271
    def test_pil_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.PILToTensor()
272
        np_rng = np.random.RandomState(0)
273

274
275
276
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
277
        torch.testing.assert_close(input_data, output)
278

279
        input_data = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
280
281
282
283
284
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        expected_output = input_data.transpose((2, 0, 1))
        torch.testing.assert_close(output.numpy(), expected_output)

285
        input_data = torch.as_tensor(np_rng.rand(channels, height, width).astype(np.float32))
286
287
288
        img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
        output = trans(img)  # HWC -> CHW
        expected_output = (input_data * 255).byte()
289
        torch.testing.assert_close(output, expected_output)
290

291
292
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
293
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
294
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
295
        torch.testing.assert_close(input_data, output)
296

297
298
299
    def test_pil_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.PILToTensor()
300
        np_rng = np.random.RandomState(0)
301

302
        with pytest.raises(TypeError):
303
            trans(np_rng.rand(1, height, width).tolist())
304

305
        with pytest.raises(TypeError):
306
            trans(np_rng.rand(1, height, width))
307
308


309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
326
327
328
329
        assert (
            min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained
            and aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon
        ) or aspect_ratio_obtained == 1.0
330
331
332
333
334
335
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # single integer
        22,
        27,
        28,
        36,
        # single integer in tuple/list
        [
            22,
        ],
        (27,),
    ],
)
@pytest.mark.parametrize("max_size", (None, 37, 1000))
367
368
369
370
371
372
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

    t = transforms.Resize(osize, max_size=max_size)
    result = t(img)

373
    msg = f"{height}, {width} - {osize} - {max_size}"
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # two integers sequence output
        [22, 22],
        [22, 28],
        [22, 36],
        [27, 22],
        [36, 22],
        [28, 28],
        [28, 37],
        [37, 27],
        [37, 37],
    ],
)
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

    t = transforms.Resize(osize)
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


443
444
445
446
447
448
449
450
451
452
453
454
455
@pytest.mark.parametrize("height, width", ((32, 64), (64, 32)))
def test_resize_size_equals_small_edge_size(height, width):
    # Non-regression test for https://github.com/pytorch/vision/issues/5405
    # max_size used to be ignored if size == small_edge_size
    max_size = 40
    img = Image.new("RGB", size=(width, height), color=127)

    small_edge = min(height, width)
    t = transforms.Resize(small_edge, max_size=max_size)
    result = t(img)
    assert max(result.size) == max_size


456
457
458
459
460
461
462
class TestPad:
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        fill = random.randint(1, 50)
463
464
465
466
467
468
469
        result = transforms.Compose(
            [
                transforms.ToPILImage(),
                transforms.Pad(padding, fill=fill),
                transforms.ToTensor(),
            ]
        )(img)
470
471
472
473
474
475
476
477
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
478
479
480
        torch.testing.assert_close(h_padded, torch.full_like(h_padded, fill_value=fill_v), rtol=0.0, atol=eps)
        torch.testing.assert_close(w_padded, torch.full_like(w_padded, fill_value=fill_v), rtol=0.0, atol=eps)
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)), transforms.ToPILImage()(img))
481
482
483
484
485
486

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

487
        padding = tuple(random.randint(1, 20) for _ in range(2))
488
489
490
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

491
        padding = tuple(random.randint(1, 20) for _ in range(4))
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
507
        edge_padded_img = F.pad(img, 3, padding_mode="edge")
508
509
510
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
511
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8))
512
513
514
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
515
        reflect_padded_img = F.pad(img, (3, 2), padding_mode="reflect")
516
517
518
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
519
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8))
520
521
522
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
523
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode="symmetric")
524
525
526
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
527
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8))
528
529
530
531
532
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
533
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode="symmetric")
534
535
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
536
537
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8))
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8))
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
        assert transforms.ToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
556
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])
557
558


559
@pytest.mark.parametrize(
560
    "fn, trans, kwargs",
561
562
563
564
565
566
567
    [
        (F.invert, transforms.RandomInvert, {}),
        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
        (F.autocontrast, transforms.RandomAutocontrast, {}),
        (F.equalize, transforms.RandomEqualize, {}),
568
569
570
        (F.vflip, transforms.RandomVerticalFlip, {}),
        (F.hflip, transforms.RandomHorizontalFlip, {}),
        (partial(F.to_grayscale, num_output_channels=3), transforms.RandomGrayscale, {}),
571
572
    ],
)
573
574
575
576
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_randomness(fn, trans, kwargs, seed, p):
    torch.manual_seed(seed)
577
578
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

579
580
    expected_transformed_img = fn(img, **kwargs)
    randomly_transformed_img = trans(p=p, **kwargs)(img)
581

582
583
584
585
    if p == 0:
        assert randomly_transformed_img == img
    elif p == 1:
        assert randomly_transformed_img == expected_transformed_img
586

587
    trans(**kwargs).__repr__()
588
589


590
591
592
593
594
595
596
597
598
def test_autocontrast_equal_minmax():
    img_tensor = torch.tensor([[[10]], [[128]], [[245]]], dtype=torch.uint8).expand(3, 32, 32)
    img_pil = F.to_pil_image(img_tensor)

    img_tensor = F.autocontrast(img_tensor)
    img_pil = F.autocontrast(img_pil)
    torch.testing.assert_close(img_tensor, F.pil_to_tensor(img_pil))


599
600
601
602
class TestToPil:
    def _get_1_channel_tensor_various_types():
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
603
        yield img_data_float, expected_output, "L"
604

605
606
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
607
        yield img_data_byte, expected_output, "L"
608

609
610
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        expected_output = img_data_short.numpy()
611
        yield img_data_short, expected_output, "I;16"
612

613
614
        img_data_int = torch.IntTensor(1, 4, 4).random_()
        expected_output = img_data_int.numpy()
615
        yield img_data_int, expected_output, "I"
616

617
618
619
    def _get_2d_tensor_various_types():
        img_data_float = torch.Tensor(4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
620
        yield img_data_float, expected_output, "L"
621

622
623
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
624
        yield img_data_byte, expected_output, "L"
625

626
627
        img_data_short = torch.ShortTensor(4, 4).random_()
        expected_output = img_data_short.numpy()
628
        yield img_data_short, expected_output, "I;16"
629

630
631
        img_data_int = torch.IntTensor(4, 4).random_()
        expected_output = img_data_int.numpy()
632
        yield img_data_int, expected_output, "I"
633

634
635
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_1_channel_tensor_various_types())
636
637
638
    def test_1_channel_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()
639

640
        img = transform(img_data)
641
        assert img.mode == expected_mode
642
        torch.testing.assert_close(expected_output, to_tensor(img).numpy())
643

644
645
646
    def test_1_channel_float_tensor_to_pil_image(self):
        img_data = torch.Tensor(1, 4, 4).uniform_()
        # 'F' mode for torch.FloatTensor
647
648
        img_F_mode = transforms.ToPILImage(mode="F")(img_data)
        assert img_F_mode.mode == "F"
649
        torch.testing.assert_close(
650
            np.array(Image.fromarray(img_data.squeeze(0).numpy(), mode="F")), np.array(img_F_mode)
651
        )
652

653
654
655
656
657
658
659
660
661
662
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4, 1).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4, 1).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4, 1).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4, 1).random_().numpy(), "I"),
        ],
    )
663
664
665
    def test_1_channel_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
666
        assert img.mode == expected_mode
667
668
669
        # note: we explicitly convert img's dtype because pytorch doesn't support uint16
        # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
        torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
670

671
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
672
673
    def test_2_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
674

675
676
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
677
            assert img.mode == "LA"  # default should assume LA
678
679
680
681
682
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(2):
683
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
684
685
686
687
688
689
690

    def test_2_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        transforms.ToPILImage().__repr__()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
691
            transforms.ToPILImage(mode="RGBA")(img_data)
692
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
693
            transforms.ToPILImage(mode="P")(img_data)
694
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
695
            transforms.ToPILImage(mode="RGB")(img_data)
696

697
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
698
699
700
701
702
    def test_2_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
703
            assert img.mode == "LA"  # default should assume LA
704
705
706
707
708
709
710
711
712
713
714
715
716
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(2):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_2_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(2, 4, 4).uniform_()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
717
            transforms.ToPILImage(mode="RGBA")(img_data)
718
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
719
            transforms.ToPILImage(mode="P")(img_data)
720
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
721
            transforms.ToPILImage(mode="RGB")(img_data)
722

723
724
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_2d_tensor_various_types())
725
726
727
728
729
    def test_2d_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img = transform(img_data)
730
        assert img.mode == expected_mode
731
732
        torch.testing.assert_close(expected_output, to_tensor(img).numpy()[0])

733
734
735
736
737
738
739
740
741
742
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4).random_().numpy(), "I"),
        ],
    )
743
744
745
    def test_2d_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
746
        assert img.mode == expected_mode
747
        np.testing.assert_allclose(img_data, img)
748

749
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
750
751
752
    def test_3_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
753

754
755
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
756
            assert img.mode == "RGB"  # default should assume RGB
757
758
759
760
761
762
763
764
765
766
767
768
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_3_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
769
            transforms.ToPILImage(mode="RGBA")(img_data)
770
        with pytest.raises(ValueError, match=error_message_3d):
771
            transforms.ToPILImage(mode="P")(img_data)
772
        with pytest.raises(ValueError, match=error_message_3d):
773
            transforms.ToPILImage(mode="LA")(img_data)
774

775
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
776
777
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

778
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
779
780
781
782
783
    def test_3_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
784
            assert img.mode == "RGB"  # default should assume RGB
785
786
787
788
789
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
790
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
791
792
793
794
795
796
797
798
799
800

    def test_3_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
801
            transforms.ToPILImage(mode="RGBA")(img_data)
802
        with pytest.raises(ValueError, match=error_message_3d):
803
            transforms.ToPILImage(mode="P")(img_data)
804
        with pytest.raises(ValueError, match=error_message_3d):
805
            transforms.ToPILImage(mode="LA")(img_data)
806

807
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
808
809
810
811
812
813
    def test_4_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(4, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
814
            assert img.mode == "RGBA"  # default should assume RGBA
815
816
817
818
819
820
821
822
823
824
825
826
827
828
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(4):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_4_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(4, 4, 4).uniform_()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
829
            transforms.ToPILImage(mode="RGB")(img_data)
830
        with pytest.raises(ValueError, match=error_message_4d):
831
            transforms.ToPILImage(mode="P")(img_data)
832
        with pytest.raises(ValueError, match=error_message_4d):
833
            transforms.ToPILImage(mode="LA")(img_data)
834

835
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
836
837
838
839
840
    def test_4_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
841
            assert img.mode == "RGBA"  # default should assume RGBA
842
843
844
845
846
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(4):
847
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
848
849
850
851
852
853
854

    def test_4_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
855
            transforms.ToPILImage(mode="RGB")(img_data)
856
        with pytest.raises(ValueError, match=error_message_4d):
857
            transforms.ToPILImage(mode="P")(img_data)
858
        with pytest.raises(ValueError, match=error_message_4d):
859
            transforms.ToPILImage(mode="LA")(img_data)
860
861
862

    def test_ndarray_bad_types_to_pil_image(self):
        trans = transforms.ToPILImage()
863
        reg_msg = r"Input type \w+ is not supported"
864
865
866
867
868
869
870
871
872
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.int64))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint16))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint32))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.float64))

873
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
874
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
875
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
876
877
878
            transforms.ToPILImage()(np.ones([4, 4, 6]))

    def test_tensor_bad_types_to_pil_image(self):
879
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
880
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
881
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
882
            transforms.ToPILImage()(torch.ones(6, 4, 4))
883
884


885
886
887
888
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
889
    x_pil = Image.fromarray(x_np, mode="RGB")
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
915
    x_pil = Image.fromarray(x_np, mode="RGB")
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


937
@pytest.mark.skipif(Image.__version__ >= "7", reason="Temporarily disabled")
938
939
940
941
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
942
    x_pil = Image.fromarray(x_np, mode="RGB")
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
968
    x_pil = Image.fromarray(x_np, mode="RGB")
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    x_data = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        65,
        108,
        101,
        120,
        97,
        110,
        100,
        101,
        114,
        32,
        86,
        114,
        121,
        110,
        105,
        111,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1049
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1050
    x_pil = Image.fromarray(x_np, mode="RGB")
1051
1052
1053
1054
1055
1056
1057
1058
1059

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        30,
        30,
        74,
        103,
        96,
        114,
        97,
        110,
        100,
        101,
        114,
        32,
        81,
        103,
        108,
        102,
        101,
        107,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1110
1111
1112
1113
1114
1115
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        46,
        118,
        111,
        132,
        97,
        110,
        100,
        101,
        114,
        32,
        95,
        135,
        146,
        126,
        112,
        119,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1166
1167
1168
1169
1170
1171
1172
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1173
    x_pil = Image.fromarray(x_np, mode="RGB")
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1185
    x_pil = Image.fromarray(x_np, mode="RGB")
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1211
    x_rgb = Image.fromarray(x_np, mode="RGB")
1212

1213
1214
1215
1216
1217
1218
1219
    x_l = x_rgb.convert("L")
    assert F.adjust_brightness(x_l, 2).mode == "L"
    assert F.adjust_saturation(x_l, 2).mode == "L"
    assert F.adjust_contrast(x_l, 2).mode == "L"
    assert F.adjust_hue(x_l, 0.4).mode == "L"
    assert F.adjust_sharpness(x_l, 2).mode == "L"
    assert F.adjust_gamma(x_l, 0.5).mode == "L"
1220
1221


1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


1258
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1335
1336
1337
1338
1339
1340
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1341
1342
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1343
1344
1345
1346
1347
1348
1349
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
1350
1351
    assert gray_pil_1.mode == "L", "mode should be L"
    assert gray_np_1.shape == tuple(x_shape[0:2]), "should be 1 channel"
1352
1353
1354
1355
1356
1357
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1358
1359
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1360
1361
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
1362
    assert_equal(gray_np, gray_np_2[:, :, 0])
1363
1364
1365
1366
1367

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1368
1369
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1370
1371
1372
1373
1374
1375
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
1376
1377
    assert gray_pil_4.mode == "RGB", "mode should be RGB"
    assert gray_np_4.shape == tuple(x_shape), "should be 3 channel"
1378
1379
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
1380
    assert_equal(gray_np, gray_np_4[:, :, 0])
1381
1382
1383
1384
1385

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


1386
1387
1388
1389
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_random_apply(p, seed):
    torch.manual_seed(seed)
1390
    random_apply_transform = transforms.RandomApply([transforms.RandomRotation((45, 50))], p=p)
1391
1392
1393
1394
1395
1396
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_apply_transform(img)
    if p == 0:
        assert out == img
    elif p == 1:
        assert out != img
1397

1398
1399
    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()
1400
1401


1402
1403
1404
1405
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("proba_passthrough", (0, 1))
def test_random_choice(proba_passthrough, seed):
    random.seed(seed)  # RandomChoice relies on python builtin random.choice, not pytorch
1406

1407
    random_choice_transform = transforms.RandomChoice(
1408
        [
1409
            lambda x: x,  # passthrough
1410
            transforms.RandomRotation((45, 50)),
1411
        ],
1412
        p=[proba_passthrough, 1 - proba_passthrough],
1413
1414
    )

1415
1416
1417
1418
1419
1420
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_choice_transform(img)
    if proba_passthrough == 1:
        assert out == img
    elif proba_passthrough == 0:
        assert out != img
1421
1422
1423
1424
1425

    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


1426
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1427
1428
1429
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
1430
    random_order_transform = transforms.RandomOrder([transforms.Resize(20), transforms.CenterCrop(10)])
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


1448
1449
1450
1451
1452
1453
1454
1455
def test_linear_transformation():
    num_samples = 1000
    x = torch.randn(num_samples, 3, 10, 10)
    flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
    # compute principal components
    sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
    u, s, _ = np.linalg.svd(sigma.numpy())
    zca_epsilon = 1e-10  # avoid division by 0
1456
    d = torch.Tensor(np.diag(1.0 / np.sqrt(s + zca_epsilon)))
1457
1458
    u = torch.Tensor(u)
    principal_components = torch.mm(torch.mm(u, d), u.t())
1459
    mean_vector = torch.sum(flat_x, dim=0) / flat_x.size(0)
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
    # initialize whitening matrix
    whitening = transforms.LinearTransformation(principal_components, mean_vector)
    # estimate covariance and mean using weak law of large number
    num_features = flat_x.size(1)
    cov = 0.0
    mean = 0.0
    for i in x:
        xwhite = whitening(i)
        xwhite = xwhite.view(1, -1).numpy()
        cov += np.dot(xwhite, xwhite.T) / num_features
        mean += np.sum(xwhite) / num_features
    # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1472
1473
1474
1475
1476
1477
    torch.testing.assert_close(
        cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False, msg="cov not close to 1"
    )
    torch.testing.assert_close(
        mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False, msg="mean not close to 0"
    )
1478
1479
1480
1481
1482

    # Checking if LinearTransformation can be printed as string
    whitening.__repr__()


1483
@pytest.mark.parametrize("dtype", int_dtypes())
1484
1485
1486
1487
1488
1489
1490
1491
1492
def test_max_value(dtype):

    assert F_t._max_value(dtype) == torch.iinfo(dtype).max
    # remove float testing as it can lead to errors such as
    # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
    # for dtype in float_dtypes():
    # self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)


1493
1494
@pytest.mark.parametrize("should_vflip", [True, False])
@pytest.mark.parametrize("single_dim", [True, False])
1495
1496
1497
1498
1499
1500
1501
1502
1503
def test_ten_crop(should_vflip, single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
1504
        transform = transforms.TenCrop(crop_h, vertical_flip=should_vflip)
1505
1506
        five_crop = transforms.FiveCrop(crop_h)
    else:
1507
        transform = transforms.TenCrop((crop_h, crop_w), vertical_flip=should_vflip)
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
        five_crop = transforms.FiveCrop((crop_h, crop_w))

    img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
    results = transform(img)
    expected_output = five_crop(img)

    # Checking if FiveCrop and TenCrop can be printed as string
    transform.__repr__()
    five_crop.__repr__()

    if should_vflip:
        vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
        expected_output += five_crop(vflipped_img)
    else:
        hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
        expected_output += five_crop(hflipped_img)

    assert len(results) == 10
    assert results == expected_output


1529
@pytest.mark.parametrize("single_dim", [True, False])
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
def test_five_crop(single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
        transform = transforms.FiveCrop(crop_h)
    else:
        transform = transforms.FiveCrop((crop_h, crop_w))

    img = torch.FloatTensor(3, h, w).uniform_()

    results = transform(to_pil_image(img))

    assert len(results) == 5
    for crop in results:
        assert crop.size == (crop_w, crop_h)

    to_pil_image = transforms.ToPILImage()
    tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
1553
1554
1555
    tr = to_pil_image(img[:, 0:crop_h, w - crop_w :])
    bl = to_pil_image(img[:, h - crop_h :, 0:crop_w])
    br = to_pil_image(img[:, h - crop_h :, w - crop_w :])
1556
1557
1558
1559
1560
    center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
    expected_output = (tl, tr, bl, br, center)
    assert results == expected_output


1561
1562
1563
@pytest.mark.parametrize("policy", transforms.AutoAugmentPolicy)
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1564
def test_autoaugment(policy, fill, grayscale):
1565
1566
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1567
1568
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1569
1570
1571
1572
1573
1574
    transform = transforms.AutoAugment(policy=policy, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1575
1576
1577
1578
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1579
def test_randaugment(num_ops, magnitude, fill, grayscale):
1580
1581
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1582
1583
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1584
1585
1586
1587
1588
1589
    transform = transforms.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1590
1591
1592
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("num_magnitude_bins", [10, 13, 30])
@pytest.mark.parametrize("grayscale", [True, False])
1593
def test_trivialaugmentwide(fill, num_magnitude_bins, grayscale):
1594
1595
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1596
1597
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1598
1599
1600
1601
1602
1603
    transform = transforms.TrivialAugmentWide(fill=fill, num_magnitude_bins=num_magnitude_bins)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("severity", [1, 10])
@pytest.mark.parametrize("mixture_width", [1, 2])
@pytest.mark.parametrize("chain_depth", [-1, 2])
@pytest.mark.parametrize("all_ops", [True, False])
@pytest.mark.parametrize("grayscale", [True, False])
def test_augmix(fill, severity, mixture_width, chain_depth, all_ops, grayscale):
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
    transform = transforms.AugMix(
        fill=fill, severity=severity, mixture_width=mixture_width, chain_depth=chain_depth, all_ops=all_ops
    )
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1623
1624
1625
1626
1627
1628
def test_random_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2
    img = torch.ones(3, height, width)
1629
1630
1631
1632
1633
1634
1635
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1636
1637
1638
1639
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    padding = random.randint(1, 20)
1640
1641
1642
1643
1644
1645
1646
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ]
    )(img)
1647
1648
1649
    assert result.size(1) == oheight
    assert result.size(2) == owidth

1650
1651
1652
    result = transforms.Compose(
        [transforms.ToPILImage(), transforms.RandomCrop((height, width)), transforms.ToTensor()]
    )(img)
1653
1654
1655
1656
    assert result.size(1) == height
    assert result.size(2) == width
    torch.testing.assert_close(result, img)

1657
1658
1659
1660
1661
1662
1663
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ]
    )(img)
1664
1665
1666
1667
1668
1669
1670
1671
1672
    assert result.size(1) == height + 1
    assert result.size(2) == width + 1

    t = transforms.RandomCrop(48)
    img = torch.ones(3, 32, 32)
    with pytest.raises(ValueError, match=r"Required crop size .+ is larger then input image size .+"):
        t(img)


1673
1674
1675
1676
1677
1678
1679
1680
1681
def test_center_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2

    img = torch.ones(3, height, width)
    oh1 = (height - oheight) // 2
    ow1 = (width - owidth) // 2
1682
    imgnarrow = img[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth]
1683
    imgnarrow.fill_(0)
1684
1685
1686
1687
1688
1689
1690
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1691
1692
1693
    assert result.sum() == 0
    oheight += 1
    owidth += 1
1694
1695
1696
1697
1698
1699
1700
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1701
1702
1703
1704
    sum1 = result.sum()
    assert sum1 > 1
    oheight += 1
    owidth += 1
1705
1706
1707
1708
1709
1710
1711
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1712
1713
1714
1715
1716
    sum2 = result.sum()
    assert sum2 > 0
    assert sum2 > sum1


1717
1718
1719
1720
@pytest.mark.parametrize("odd_image_size", (True, False))
@pytest.mark.parametrize("delta", (1, 3, 5))
@pytest.mark.parametrize("delta_width", (-2, -1, 0, 1, 2))
@pytest.mark.parametrize("delta_height", (-2, -1, 0, 1, 2))
1721
def test_center_crop_2(odd_image_size, delta, delta_width, delta_height):
1722
    """Tests when center crop size is larger than image size, along any dimension"""
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735

    # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
    input_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
    if odd_image_size:
        input_image_size = (input_image_size[0] + 1, input_image_size[1] + 1)

    delta_height *= delta
    delta_width *= delta

    img = torch.ones(3, *input_image_size)
    crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

    # Test both transforms, one with PIL input and one with tensor
1736
1737
    output_pil = transforms.Compose(
        [transforms.ToPILImage(), transforms.CenterCrop(crop_size), transforms.ToTensor()],
1738
1739
1740
1741
1742
1743
1744
1745
    )(img)
    assert output_pil.size()[1:3] == crop_size

    output_tensor = transforms.CenterCrop(crop_size)(img)
    assert output_tensor.size()[1:3] == crop_size

    # Ensure output for PIL and Tensor are equal
    assert_equal(
1746
1747
        output_tensor,
        output_pil,
1748
        msg=f"image_size: {input_image_size} crop_size: {crop_size}",
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
    )

    # Check if content in center of both image and cropped output is same.
    center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
    crop_center_tl, input_center_tl = [0, 0], [0, 0]
    for index in range(2):
        if crop_size[index] > input_image_size[index]:
            crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
        else:
            input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

    output_center = output_pil[
        :,
1762
1763
        crop_center_tl[0] : crop_center_tl[0] + center_size[0],
        crop_center_tl[1] : crop_center_tl[1] + center_size[1],
1764
1765
1766
1767
    ]

    img_center = img[
        :,
1768
1769
        input_center_tl[0] : input_center_tl[0] + center_size[0],
        input_center_tl[1] : input_center_tl[1] + center_size[1],
1770
1771
    ]

1772
    assert_equal(output_center, img_center)
1773
1774
1775
1776
1777
1778
1779
1780


def test_color_jitter():
    color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1781
1782
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

    for _ in range(10):
        y_pil = color_jitter(x_pil)
        assert y_pil.mode == x_pil.mode

        y_pil_2 = color_jitter(x_pil_2)
        assert y_pil_2.mode == x_pil_2.mode

    # Checking if ColorJitter can be printed as string
    color_jitter.__repr__()


1795
@pytest.mark.parametrize("seed", range(10))
1796
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1797
1798
def test_random_erasing(seed):
    torch.random.manual_seed(seed)
1799
1800
    img = torch.ones(3, 128, 128)

1801
1802
1803
1804
1805
1806
1807
1808
1809
    t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.0))
    y, x, h, w, v = t.get_params(
        img,
        t.scale,
        t.ratio,
        [
            t.value,
        ],
    )
1810
1811
1812
    aspect_ratio = h / w
    # Add some tolerance due to the rounding and int conversion used in the transform
    tol = 0.05
1813
    assert 1 / 3 - tol <= aspect_ratio <= 3 + tol
1814

1815
    # Make sure that h > w and h < w are equaly likely (log-scale sampling)
1816
1817
1818
1819
    aspect_ratios = []
    random.seed(42)
    trial = 1000
    for _ in range(trial):
1820
1821
1822
1823
1824
1825
1826
1827
        y, x, h, w, v = t.get_params(
            img,
            t.scale,
            t.ratio,
            [
                t.value,
            ],
        )
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
        aspect_ratios.append(h / w)

    count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
    p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
    assert p_value > 0.0001

    # Checking if RandomErasing can be printed as string
    t.__repr__()


def test_random_rotation():

    with pytest.raises(ValueError):
        transforms.RandomRotation(-0.7)

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7])

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7, 0, 0.7])

    t = transforms.RandomRotation(0, fill=None)
    assert t.fill == 0

    t = transforms.RandomRotation(10)
    angle = t.get_params(t.degrees)
1854
    assert angle > -10 and angle < 10
1855
1856
1857

    t = transforms.RandomRotation((-10, 10))
    angle = t.get_params(t.degrees)
1858
    assert -10 < angle < 10
1859
1860
1861
1862
1863

    # Checking if RandomRotation can be printed as string
    t.__repr__()

    # assert deprecation warning and non-BC
1864
1865
1866
1867
1868
1869
1870
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "The parameter 'resample' is deprecated since 0.12 and will be removed 0.14. "
            "Please use 'interpolation' instead."
        ),
    ):
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
        t = transforms.RandomRotation((-10, 10), resample=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.RandomRotation((-10, 10), interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


def test_random_rotation_error():
    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomRotation(0, fill={})


def test_randomperspective():
    for _ in range(10):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        perp = transforms.RandomPerspective()
        startpoints, endpoints = perp.get_params(width, height, 0.5)
        tr_img = F.perspective(img, startpoints, endpoints)
        tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
        tr_img = F.to_tensor(tr_img)
        assert img.size[0] == width
        assert img.size[1] == height
1900
1901
1902
        assert torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3 > torch.nn.functional.mse_loss(
            tr_img2, F.to_tensor(img)
        )
1903
1904


1905
@pytest.mark.parametrize("seed", range(10))
1906
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1907
1908
def test_randomperspective_fill(mode, seed):
    torch.random.manual_seed(seed)
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomPerspective(fill={})

    t = transforms.RandomPerspective(fill=None)
    assert t.fill == 0

    height = 100
    width = 100
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    fill = 127
    num_bands = len(mode)

    img_conv = img.convert(mode)
    perspective = transforms.RandomPerspective(p=1, fill=fill)
    tr_img = perspective(img_conv)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
    tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    wrong_num_bands = num_bands + 1
    with pytest.raises(ValueError):
        F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))


1947
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1948
1949
def test_normalize():
    def samples_from_standard_normal(tensor):
1950
        p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
        return p_value > 0.0001

    random_state = random.getstate()
    random.seed(42)
    for channels in [1, 3]:
        img = torch.rand(channels, 10, 10)
        mean = [img[c].mean() for c in range(channels)]
        std = [img[c].std() for c in range(channels)]
        normalized = transforms.Normalize(mean, std)(img)
        assert samples_from_standard_normal(normalized)
    random.setstate(random_state)

    # Checking if Normalize can be printed as string
    transforms.Normalize(mean, std).__repr__()

    # Checking the optional in-place behaviour
    tensor = torch.rand((1, 16, 16))
    tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
    assert_equal(tensor, tensor_inplace)


1972
1973
@pytest.mark.parametrize("dtype1", [torch.float32, torch.float64])
@pytest.mark.parametrize("dtype2", [torch.int64, torch.float32, torch.float64])
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
def test_normalize_different_dtype(dtype1, dtype2):
    img = torch.rand(3, 10, 10, dtype=dtype1)
    mean = torch.tensor([1, 2, 3], dtype=dtype2)
    std = torch.tensor([1, 2, 1], dtype=dtype2)
    # checks that it doesn't crash
    transforms.functional.normalize(img, mean, std)


def test_normalize_3d_tensor():
    torch.manual_seed(28)
    n_channels = 3
    img_size = 10
    mean = torch.rand(n_channels)
    std = torch.rand(n_channels)
    img = torch.rand(n_channels, img_size, img_size)
    target = F.normalize(img, mean, std)

    mean_unsqueezed = mean.view(-1, 1, 1)
    std_unsqueezed = std.view(-1, 1, 1)
    result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
1994
1995
1996
    result2 = F.normalize(
        img, mean_unsqueezed.repeat(1, img_size, img_size), std_unsqueezed.repeat(1, img_size, img_size)
    )
1997
1998
1999
2000
    torch.testing.assert_close(target, result1)
    torch.testing.assert_close(target, result2)


2001
class TestAffine:
2002
    @pytest.fixture(scope="class")
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
    def input_img(self):
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        for pt in [(16, 16), (20, 16), (20, 20)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
        return input_img

    def test_affine_translate_seq(self, input_img):
        with pytest.raises(TypeError, match=r"Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)

2015
    @pytest.fixture(scope="class")
2016
2017
2018
2019
2020
2021
2022
2023
2024
    def pil_image(self, input_img):
        return F.to_pil_image(input_img)

    def _to_3x3_inv(self, inv_result_matrix):
        result_matrix = np.zeros((3, 3))
        result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
        result_matrix[2, 2] = 1
        return np.linalg.inv(result_matrix)

2025
    def _test_transformation(self, angle, translate, scale, shear, pil_image, input_img, center=None):
2026
2027
2028

        a_rad = math.radians(angle)
        s_rad = [math.radians(sh_) for sh_ in shear]
2029
        cnt = [20, 20] if center is None else center
2030
2031
2032
2033
2034
2035
        cx, cy = cnt
        tx, ty = translate
        sx, sy = s_rad
        rot = a_rad

        # 1) Check transformation matrix:
2036
2037
        C = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        T = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
2038
2039
2040
        Cinv = np.linalg.inv(C)

        RS = np.array(
2041
2042
2043
2044
2045
2046
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
2047

2048
        SHx = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
2049

2050
        SHy = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
2051
2052
2053
2054
2055

        RSS = np.matmul(RS, np.matmul(SHy, SHx))

        true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

2056
2057
2058
        result_matrix = self._to_3x3_inv(
            F._get_inverse_affine_matrix(center=cnt, angle=angle, translate=translate, scale=scale, shear=shear)
        )
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
        assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
        # 2) Perform inverse mapping:
        true_result = np.zeros((40, 40, 3), dtype=np.uint8)
        inv_true_matrix = np.linalg.inv(true_matrix)
        for y in range(true_result.shape[0]):
            for x in range(true_result.shape[1]):
                # Same as for PIL:
                # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                # src/libImaging/Geometry.c#L1060
                input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                _x, _y = res[:2]
                if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                    true_result[y, x, :] = input_img[_y, _x, :]

2074
        result = F.affine(pil_image, angle=angle, translate=translate, scale=scale, shear=shear, center=center)
2075
2076
2077
2078
2079
        assert result.size == pil_image.size
        # Compute number of different pixels:
        np_result = np.array(result)
        n_diff_pixels = np.sum(np_result != true_result) / 3
        # Accept 3 wrong pixels
2080
2081
2082
        error_msg = (
            f"angle={angle}, translate={translate}, scale={scale}, shear={shear}\nn diff pixels={n_diff_pixels}\n"
        )
2083
2084
2085
2086
2087
        assert n_diff_pixels < 3, error_msg

    def test_transformation_discrete(self, pil_image, input_img):
        # Test rotation
        angle = 45
2088
2089
2090
        self._test_transformation(
            angle=angle, translate=(0, 0), scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2091

2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
        # Test rotation
        angle = 45
        self._test_transformation(
            angle=angle,
            translate=(0, 0),
            scale=1.0,
            shear=(0.0, 0.0),
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2104
2105
        # Test translation
        translate = [10, 15]
2106
2107
2108
        self._test_transformation(
            angle=0.0, translate=translate, scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2109
2110
2111

        # Test scale
        scale = 1.2
2112
2113
2114
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=scale, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2115
2116
2117

        # Test shear
        shear = [45.0, 25.0]
2118
2119
2120
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=1.0, shear=shear, pil_image=pil_image, input_img=input_img
        )
2121

2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
        # Test shear with top-left as center
        shear = [45.0, 25.0]
        self._test_transformation(
            angle=0.0,
            translate=(0.0, 0.0),
            scale=1.0,
            shear=shear,
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2134
2135
2136
2137
2138
    @pytest.mark.parametrize("angle", range(-90, 90, 36))
    @pytest.mark.parametrize("translate", range(-10, 10, 5))
    @pytest.mark.parametrize("scale", [0.77, 1.0, 1.27])
    @pytest.mark.parametrize("shear", range(-15, 15, 5))
    def test_transformation_range(self, angle, translate, scale, shear, pil_image, input_img):
2139
2140
2141
2142
2143
2144
2145
2146
        self._test_transformation(
            angle=angle,
            translate=(translate, translate),
            scale=scale,
            shear=(shear, shear),
            pil_image=pil_image,
            input_img=input_img,
        )
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193


def test_random_affine():

    with pytest.raises(ValueError):
        transforms.RandomAffine(-0.7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7, 0, 0.7])
    with pytest.raises(TypeError):
        transforms.RandomAffine([-90, 90], translate=2.0)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomAffine(0, fill={})

    t = transforms.RandomAffine(0, fill=None)
    assert t.fill == 0

    x = np.zeros((100, 100, 3), dtype=np.uint8)
    img = F.to_pil_image(x)

    t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
    for _ in range(100):
2194
        angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear, img_size=img.size)
2195
        assert -10 < angle < 10
2196
2197
        assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5
        assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
        assert 0.7 < scale < 1.3
        assert -10 < shear[0] < 10
        assert -20 < shear[1] < 40

    # Checking if RandomAffine can be printed as string
    t.__repr__()

    t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
    assert "bilinear" in t.__repr__()

    # assert deprecation warning and non-BC
2209
2210
2211
2212
2213
2214
2215
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "The parameter 'resample' is deprecated since 0.12 and will be removed in 0.14. "
            "Please use 'interpolation' instead."
        ),
    ):
2216
2217
2218
        t = transforms.RandomAffine(10, resample=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

2219
2220
2221
2222
2223
2224
2225
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "The parameter 'fillcolor' is deprecated since 0.12 and will be removed in 0.14. "
            "Please use 'fill' instead."
        ),
    ):
2226
2227
2228
2229
2230
2231
2232
2233
2234
        t = transforms.RandomAffine(10, fillcolor=10)
        assert t.fill == 10

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.RandomAffine(10, interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


2235
if __name__ == "__main__":
2236
    pytest.main([__file__])